// Starfield3D.cpp - 3D Parallax Starfield Implementation #include "Starfield3D.h" #include #include Starfield3D::Starfield3D() : rng(std::random_device{}()), width(800), height(600), centerX(400), centerY(300) { } void Starfield3D::init(int w, int h, int starCount) { width = w; height = h; centerX = width * 0.5f; centerY = height * 0.5f; stars.resize(starCount); createStarfield(); } void Starfield3D::resize(int w, int h) { width = w; height = h; centerX = width * 0.5f; centerY = height * 0.5f; } float Starfield3D::randomFloat(float min, float max) { std::uniform_real_distribution dist(min, max); return dist(rng); } int Starfield3D::randomRange(int min, int max) { std::uniform_int_distribution dist(min, max - 1); return dist(rng); } void Starfield3D::setRandomDirection(Star3D& star) { star.targetVx = randomFloat(-MAX_VELOCITY, MAX_VELOCITY); star.targetVy = randomFloat(-MAX_VELOCITY, MAX_VELOCITY); // Allow stars to move both toward and away from viewer if (randomFloat(0.0f, 1.0f) < REVERSE_PROBABILITY) { // Move away from viewer (positive Z) star.targetVz = STAR_SPEED * randomFloat(0.5f, 1.0f); } else { // Move toward viewer (negative Z) star.targetVz = -STAR_SPEED * randomFloat(0.7f, 1.3f); } star.changing = true; star.changeTimer = randomFloat(30.0f, 120.0f); // Direction change lasts 30-120 frames } void Starfield3D::updateStar(int index) { Star3D& star = stars[index]; star.x = randomFloat(-25.0f, 25.0f); star.y = randomFloat(-25.0f, 25.0f); star.z = randomFloat(1.0f, MAX_DEPTH); // Give stars initial velocities in all possible directions if (randomFloat(0.0f, 1.0f) < 0.5f) { // Half stars start moving toward viewer star.vx = randomFloat(-0.1f, 0.1f); star.vy = randomFloat(-0.1f, 0.1f); star.vz = -STAR_SPEED * randomFloat(0.8f, 1.2f); } else { // Half stars start moving in random directions star.vx = randomFloat(-0.2f, 0.2f); star.vy = randomFloat(-0.2f, 0.2f); // 30% chance to start moving away if (randomFloat(0.0f, 1.0f) < 0.3f) { star.vz = STAR_SPEED * randomFloat(0.5f, 0.8f); } else { star.vz = -STAR_SPEED * randomFloat(0.8f, 1.2f); } } star.targetVx = star.vx; star.targetVy = star.vy; star.targetVz = star.vz; star.changing = false; star.changeTimer = 0.0f; star.type = randomRange(0, COLOR_COUNT); // Give some stars initial direction variations if (randomFloat(0.0f, 1.0f) < 0.4f) { setRandomDirection(star); } } void Starfield3D::createStarfield() { for (size_t i = 0; i < stars.size(); ++i) { updateStar(static_cast(i)); } } void Starfield3D::update(float deltaTime) { const float frameRate = 60.0f; // Target 60 FPS for consistency const float frameMultiplier = deltaTime * frameRate; for (size_t i = 0; i < stars.size(); ++i) { Star3D& star = stars[i]; // Randomly change direction occasionally if (!star.changing && randomFloat(0.0f, 1.0f) < DIRECTION_CHANGE_PROBABILITY * frameMultiplier) { setRandomDirection(star); } // Update velocities to approach target values if (star.changing) { // Smoothly transition to target velocities const float change = VELOCITY_CHANGE * frameMultiplier; star.vx += (star.targetVx - star.vx) * change; star.vy += (star.targetVy - star.vy) * change; star.vz += (star.targetVz - star.vz) * change; // Decrement change timer star.changeTimer -= frameMultiplier; if (star.changeTimer <= 0.0f) { star.changing = false; } } // Update position using current velocity star.x += star.vx * frameMultiplier; star.y += star.vy * frameMultiplier; star.z += star.vz * frameMultiplier; // Handle boundaries - reset star if it moves out of bounds, too close, or too far if (star.z <= MIN_Z || star.z >= MAX_Z || std::abs(star.x) > 50.0f || std::abs(star.y) > 50.0f) { updateStar(static_cast(i)); } } } void Starfield3D::drawStar(SDL_Renderer* renderer, float x, float y, SDL_Color color, float alphaScale) { Uint8 alpha = static_cast(std::clamp(color.a * alphaScale, 0.0f, 255.0f)); SDL_SetRenderDrawColor(renderer, color.r, color.g, color.b, alpha); // Draw star as a small rectangle (1x1 pixel) SDL_FRect rect{x, y, 1.0f, 1.0f}; SDL_RenderFillRect(renderer, &rect); } void Starfield3D::draw(SDL_Renderer* renderer, float offsetX, float offsetY, float alphaScale, bool grayscale) { for (const Star3D& star : stars) { // Calculate perspective projection factor const float k = DEPTH_FACTOR / star.z; // Calculate screen position with perspective const float px = star.x * k + centerX; const float py = star.y * k + centerY; // Only draw stars that are within the viewport if (px >= 0.0f && px <= static_cast(width) && py >= 0.0f && py <= static_cast(height)) { SDL_Color baseColor = STAR_COLORS[star.type % COLOR_COUNT]; if (grayscale) { Uint8 gray = static_cast(0.299f * baseColor.r + 0.587f * baseColor.g + 0.114f * baseColor.b); baseColor.r = baseColor.g = baseColor.b = gray; } drawStar(renderer, px + offsetX, py + offsetY, baseColor, alphaScale); } } }