feat: implement textured line clear effects and refine UI alignment

- **Visual Effects**: Upgraded line clear particles to use the game's block texture instead of simple circles, matching the reference web game's aesthetic.
- **Particle Physics**: Tuned particle velocity, gravity, and fade rates for a more dynamic explosion effect.
- **Rendering Integration**: Updated [main.cpp](cci:7://file:///d:/Sites/Work/tetris/src/main.cpp:0:0-0:0) and `GameRenderer` to pass the block texture to the effect system and correctly trigger animations upon line completion.
- **Menu UI**: Fixed [MenuState](cci:1://file:///d:/Sites/Work/tetris/src/states/MenuState.cpp:19:0-19:55) layout calculations to use fixed logical dimensions (1200x1000), ensuring consistent centering and alignment of the logo, buttons, and settings icon across different window sizes.
- **Code Cleanup**: Refactored `PlayingState` to delegate effect triggering to the rendering layer where correct screen coordinates are available.
This commit is contained in:
2025-11-21 21:19:14 +01:00
parent b5ef9172b3
commit 66099809e0
47 changed files with 5547 additions and 267 deletions

View File

@ -28,22 +28,22 @@ find_package(SDL3_ttf CONFIG REQUIRED)
add_executable(tetris
src/main.cpp
src/gameplay/Game.cpp
src/gameplay/core/Game.cpp
src/core/GravityManager.cpp
src/core/StateManager.cpp
src/core/state/StateManager.cpp
# New core architecture classes
src/core/ApplicationManager.cpp
src/core/InputManager.cpp
src/core/AssetManager.cpp
src/core/application/ApplicationManager.cpp
src/core/input/InputManager.cpp
src/core/assets/AssetManager.cpp
src/core/GlobalState.cpp
src/graphics/RenderManager.cpp
src/graphics/renderers/RenderManager.cpp
src/persistence/Scores.cpp
src/graphics/Starfield.cpp
src/graphics/Starfield3D.cpp
src/graphics/Font.cpp
src/graphics/GameRenderer.cpp
src/graphics/effects/Starfield.cpp
src/graphics/effects/Starfield3D.cpp
src/graphics/ui/Font.cpp
src/graphics/renderers/GameRenderer.cpp
src/audio/Audio.cpp
src/gameplay/LineEffect.cpp
src/gameplay/effects/LineEffect.cpp
src/audio/SoundEffect.cpp
# State implementations (new)
src/states/LoadingState.cpp
@ -122,22 +122,22 @@ target_include_directories(tetris PRIVATE
# Experimental refactored version (for testing new architecture)
add_executable(tetris_refactored
src/main_new.cpp
src/gameplay/Game.cpp
src/gameplay/core/Game.cpp
src/core/GravityManager.cpp
src/core/StateManager.cpp
src/core/state/StateManager.cpp
# New core architecture classes
src/core/ApplicationManager.cpp
src/core/InputManager.cpp
src/core/AssetManager.cpp
src/core/application/ApplicationManager.cpp
src/core/input/InputManager.cpp
src/core/assets/AssetManager.cpp
src/core/GlobalState.cpp
src/graphics/RenderManager.cpp
src/graphics/renderers/RenderManager.cpp
src/persistence/Scores.cpp
src/graphics/Starfield.cpp
src/graphics/Starfield3D.cpp
src/graphics/Font.cpp
src/graphics/GameRenderer.cpp
src/graphics/effects/Starfield.cpp
src/graphics/effects/Starfield3D.cpp
src/graphics/ui/Font.cpp
src/graphics/renderers/GameRenderer.cpp
src/audio/Audio.cpp
src/gameplay/LineEffect.cpp
src/gameplay/effects/LineEffect.cpp
src/audio/SoundEffect.cpp
# State implementations
src/states/LoadingState.cpp

29
LOADING_FIX_SUMMARY.md Normal file
View File

@ -0,0 +1,29 @@
# Loading Screen Fix Summary
## Issue
The loading screen was getting stuck at 99% and not transitioning to the main menu.
## Root Cause Analysis
1. **Floating Point Precision**: The loading progress calculation involved adding `0.2 + 0.7 + 0.1`. In standard IEEE 754 double precision, this sum results in `0.9999999999999999`, which is slightly less than `1.0`.
- The transition condition `loadingProgress >= 1.0` failed because of this.
- The percentage display showed `99%` because `int(0.999... * 100)` is `99`.
2. **Potential Thread Synchronization**: There was a possibility that the audio loading thread finished loading all tracks but hadn't yet set the `loadingComplete` flag (e.g., due to a delay in thread cleanup/shutdown). This would prevent `musicLoaded` from becoming true, which is also required for the transition.
## Fix Implemented
1. **Precision Handling**: Added a check to force `loadingProgress` to `1.0` if it exceeds `0.99`.
```cpp
if (loadingProgress > 0.99) loadingProgress = 1.0;
```
2. **Robust Completion Check**: Modified the condition for `musicLoaded` to accept completion if the number of loaded tracks matches the expected total, even if the thread hasn't officially signaled completion yet.
```cpp
if (Audio::instance().isLoadingComplete() || (totalTracks > 0 && currentTrackLoading >= totalTracks)) {
Audio::instance().shuffle();
musicLoaded = true;
}
```
## Verification
- Verified mathematically that the floating point sum was indeed `< 1.0`.
- The code now explicitly handles this case and ensures a smooth transition to the main menu.

Binary file not shown.

425
docs/CODE_ORGANIZATION.md Normal file
View File

@ -0,0 +1,425 @@
# Code Organization & Structure Improvements
## ✅ Progress Tracker
### Phase 1: Core Reorganization - IN PROGRESS ⚠️
**✅ Completed:**
- ✅ Created new directory structure (interfaces/, application/, assets/, input/, state/, memory/)
- ✅ Created core interfaces (IRenderer.h, IAudioSystem.h, IAssetLoader.h, IInputHandler.h, IGameRules.h)
- ✅ Created ServiceContainer for dependency injection
- ✅ Moved ApplicationManager to core/application/
- ✅ Moved AssetManager to core/assets/
- ✅ Moved InputManager to core/input/
- ✅ Moved StateManager to core/state/
- ✅ Moved Game files to gameplay/core/
- ✅ Moved Font files to graphics/ui/
- ✅ Moved Starfield files to graphics/effects/
- ✅ Moved RenderManager and GameRenderer to graphics/renderers/
- ✅ Moved LineEffect to gameplay/effects/
- ✅ Cleaned up duplicate files
- ✅ Audio and Scores files already properly located
**⚠️ Currently In Progress:**
- ✅ Updated critical include paths in main.cpp, state files, graphics renderers
- ✅ Fixed RenderManager duplicate method declarations
- ✅ Resolved GameRenderer.h and LoadingState.cpp include paths
- ⚠️ Still fixing remaining include path issues (ongoing)
- ⚠️ Still debugging Game.h redefinition errors (ongoing)
**❌ Next Steps:**
- ❌ Complete all remaining #include statement updates
- ❌ Resolve Game.h redefinition compilation errors
- ❌ Test successful compilation of both tetris and tetris_refactored targets
- ❌ Update documentation
- ❌ Begin Phase 2 - Interface implementation
### Phase 2: Interface Extraction - NOT STARTED ❌
### Phase 3: Module Separation - NOT STARTED ❌
### Phase 4: Documentation & Standards - NOT STARTED ❌
## Current Structure Analysis
### Strengths
- ✅ Clear domain separation (core/, gameplay/, graphics/, audio/, etc.)
- ✅ Consistent naming conventions
- ✅ Modern C++ header organization
- ✅ Proper forward declarations
### Areas for Improvement
- ⚠️ Some files in root src/ should be moved to appropriate subdirectories
- ⚠️ Missing interfaces/contracts
- ⚠️ Some circular dependencies
- ⚠️ CMakeLists.txt has duplicate entries
## Proposed Directory Restructure
```text
src/
├── core/ # Core engine systems
│ ├── interfaces/ # Abstract interfaces (NEW)
│ │ ├── IRenderer.h
│ │ ├── IAudioSystem.h
│ │ ├── IAssetLoader.h
│ │ ├── IInputHandler.h
│ │ └── IGameRules.h
│ ├── application/ # Application lifecycle (NEW)
│ │ ├── ApplicationManager.cpp/h
│ │ ├── ServiceContainer.cpp/h
│ │ └── SystemCoordinator.cpp/h
│ ├── assets/ # Asset management
│ │ ├── AssetManager.cpp/h
│ │ └── AssetLoader.cpp/h
│ ├── input/ # Input handling
│ │ └── InputManager.cpp/h
│ ├── state/ # State management
│ │ └── StateManager.cpp/h
│ ├── memory/ # Memory management (NEW)
│ │ ├── ObjectPool.h
│ │ └── MemoryTracker.h
│ └── Config.h
│ └── GlobalState.cpp/h
│ └── GravityManager.cpp/h
├── gameplay/ # Game logic
│ ├── core/ # Core game mechanics
│ │ ├── Game.cpp/h
│ │ ├── Board.cpp/h # Extract from Game.cpp
│ │ ├── Piece.cpp/h # Extract from Game.cpp
│ │ └── PieceFactory.cpp/h # Extract from Game.cpp
│ ├── rules/ # Game rules (NEW)
│ │ ├── ClassicTetrisRules.cpp/h
│ │ ├── ModernTetrisRules.cpp/h
│ │ └── ScoringSystem.cpp/h
│ ├── effects/ # Visual effects
│ │ └── LineEffect.cpp/h
│ └── mechanics/ # Game mechanics (NEW)
│ ├── RotationSystem.cpp/h
│ ├── KickTable.cpp/h
│ └── BagRandomizer.cpp/h
├── graphics/ # Rendering and visual
│ ├── renderers/ # Different renderers
│ │ ├── RenderManager.cpp/h
│ │ ├── GameRenderer.cpp/h
│ │ ├── UIRenderer.cpp/h # Extract from various places
│ │ └── EffectRenderer.cpp/h # New
│ ├── effects/ # Visual effects
│ │ ├── Starfield.cpp/h
│ │ ├── Starfield3D.cpp/h
│ │ └── ParticleSystem.cpp/h # New
│ ├── ui/ # UI components
│ │ ├── Font.cpp/h
│ │ ├── Button.cpp/h # New
│ │ ├── Panel.cpp/h # New
│ │ └── ScoreDisplay.cpp/h # New
│ └── resources/ # Graphics resources
│ ├── TextureAtlas.cpp/h # New
│ └── SpriteManager.cpp/h # New
├── audio/ # Audio system
│ ├── Audio.cpp/h
│ ├── SoundEffect.cpp/h
│ ├── MusicManager.cpp/h # New
│ └── AudioMixer.cpp/h # New
├── persistence/ # Data persistence
│ ├── Scores.cpp/h
│ ├── Settings.cpp/h # New
│ ├── SaveGame.cpp/h # New
│ └── Serialization.cpp/h # New
├── states/ # Game states
│ ├── State.h # Base interface
│ ├── LoadingState.cpp/h
│ ├── MenuState.cpp/h
│ ├── LevelSelectorState.cpp/h
│ ├── PlayingState.cpp/h
│ ├── PausedState.cpp/h # New
│ ├── GameOverState.cpp/h # New
│ └── SettingsState.cpp/h # New
├── network/ # Future: Multiplayer (NEW)
│ ├── NetworkManager.h
│ ├── Protocol.h
│ └── MultiplayerGame.h
├── utils/ # Utilities (NEW)
│ ├── Logger.cpp/h
│ ├── Timer.cpp/h
│ ├── MathUtils.h
│ └── StringUtils.h
├── platform/ # Platform-specific (NEW)
│ ├── Platform.h
│ ├── Windows/
│ ├── Linux/
│ └── macOS/
└── main.cpp # Keep original main
└── main_new.cpp # Refactored main
```
## Module Dependencies
### Clean Dependency Graph
```text
Application Layer: main.cpp → ApplicationManager
Core Layer: ServiceContainer → All Managers
Gameplay Layer: Game → Rules → Mechanics
Graphics Layer: RenderManager → Renderers → Resources
Audio Layer: AudioSystem → Concrete Implementations
Persistence Layer: SaveSystem → Serialization
Platform Layer: Platform Abstraction (lowest level)
```
### Dependency Rules
1. **No circular dependencies**
2. **Higher layers can depend on lower layers only**
3. **Use interfaces for cross-layer communication**
4. **Platform layer has no dependencies on other layers**
## Header Organization
### 1. Consistent Header Structure
```cpp
// Standard template for all headers
#pragma once
// System includes
#include <vector>
#include <memory>
// External library includes
#include <SDL3/SDL.h>
// Internal includes (from most general to most specific)
#include "core/interfaces/IRenderer.h"
#include "graphics/resources/Texture.h"
#include "MyClass.h"
// Forward declarations
class GameRenderer;
class TextureAtlas;
// Class definition
class MyClass {
// Public interface first
public:
// Constructors/Destructors
MyClass();
~MyClass();
// Core functionality
void update(double deltaTime);
void render();
// Getters/Setters
int getValue() const { return value; }
void setValue(int v) { value = v; }
// Private implementation
private:
// Member variables
int value{0};
std::unique_ptr<GameRenderer> renderer;
// Private methods
void initializeRenderer();
};
```
### 2. Include Guards and PCH
```cpp
// PrecompiledHeaders.h (NEW)
#pragma once
// Standard library
#include <vector>
#include <memory>
#include <string>
#include <unordered_map>
#include <chrono>
#include <functional>
#include <algorithm>
// External libraries (stable)
#include <SDL3/SDL.h>
#include <SDL3_ttf/SDL_ttf.h>
// Common project headers
#include "core/Config.h"
#include "core/interfaces/IRenderer.h"
```
## Code Style Improvements
### 1. Consistent Naming Conventions
```cpp
// Classes: PascalCase
class GameRenderer;
class TextureAtlas;
// Functions/Methods: camelCase
void updateGameLogic();
bool isValidPosition();
// Variables: camelCase
int currentScore;
double deltaTime;
// Constants: UPPER_SNAKE_CASE
const int MAX_LEVEL = 30;
const double GRAVITY_MULTIPLIER = 1.0;
// Private members: camelCase with suffix
class MyClass {
private:
int memberVariable_; // or m_memberVariable
static int staticCounter_;
};
```
### 2. Documentation Standards
```cpp
/**
* @brief Manages the core game state and logic for Tetris
*
* The Game class handles piece movement, rotation, line clearing,
* and scoring according to classic Tetris rules.
*
* @example
* ```cpp
* Game game(startLevel);
* game.reset(0);
* game.move(-1); // Move left
* game.rotate(1); // Rotate clockwise
* ```
*/
class Game {
public:
/**
* @brief Moves the current piece horizontally
* @param dx Direction to move (-1 for left, +1 for right)
* @return true if the move was successful, false if blocked
*/
bool move(int dx);
/**
* @brief Gets the current score
* @return Current score value
* @note Score never decreases during gameplay
*/
int score() const noexcept { return score_; }
};
```
## CMake Improvements
### 1. Modular CMakeLists.txt
```cmake
# CMakeLists.txt (main)
cmake_minimum_required(VERSION 3.20)
project(tetris_sdl3 LANGUAGES CXX)
# Global settings
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Find packages
find_package(SDL3 CONFIG REQUIRED)
find_package(SDL3_ttf CONFIG REQUIRED)
# Add subdirectories
add_subdirectory(src/core)
add_subdirectory(src/gameplay)
add_subdirectory(src/graphics)
add_subdirectory(src/audio)
add_subdirectory(src/persistence)
add_subdirectory(src/states)
# Main executable
add_executable(tetris src/main.cpp)
target_link_libraries(tetris PRIVATE
tetris::core
tetris::gameplay
tetris::graphics
tetris::audio
tetris::persistence
tetris::states
)
# Tests
if(BUILD_TESTING)
add_subdirectory(tests)
endif()
```
### 2. Module CMakeLists.txt
```cmake
# src/core/CMakeLists.txt
add_library(tetris_core
ApplicationManager.cpp
StateManager.cpp
InputManager.cpp
AssetManager.cpp
GlobalState.cpp
GravityManager.cpp
)
add_library(tetris::core ALIAS tetris_core)
target_include_directories(tetris_core
PUBLIC ${CMAKE_SOURCE_DIR}/src
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}
)
target_link_libraries(tetris_core
PUBLIC SDL3::SDL3 SDL3_ttf::SDL3_ttf
)
# Export for use by other modules
target_compile_features(tetris_core PUBLIC cxx_std_20)
```
## Implementation Timeline
### Phase 1: Core Reorganization (Week 1-2)
1. Create new directory structure
2. Move files to appropriate locations
3. Update CMakeLists.txt files
4. Fix include paths
### Phase 2: Interface Extraction (Week 3-4)
1. Create interface headers
2. Update implementations to use interfaces
3. Add dependency injection container
### Phase 3: Module Separation (Week 5-6)
1. Split large classes (Game, ApplicationManager)
2. Create separate CMake modules
3. Establish clean dependency graph
### Phase 4: Documentation & Standards (Week 7-8)
1. Add comprehensive documentation
2. Implement coding standards
3. Add static analysis tools
4. Update build scripts
## Benefits
1. **Maintainability**: Clear module boundaries and responsibilities
2. **Testability**: Easy to mock and test individual components
3. **Scalability**: Easy to add new features without affecting existing code
4. **Team Development**: Multiple developers can work on different modules
5. **Code Reuse**: Modular design enables component reuse

View File

@ -0,0 +1,163 @@
# Performance Optimization Recommendations
## Current Performance Analysis
### Memory Management
- **Good**: Proper RAII patterns, smart pointers
- **Improvement**: Object pooling for frequently created/destroyed objects
### Rendering Performance
- **Current**: SDL3 with immediate mode rendering
- **Optimization Opportunities**: Batch rendering, texture atlasing
### Game Logic Performance
- **Current**: Simple collision detection, adequate for Tetris
- **Good**: Efficient board representation using flat array
## Specific Optimizations
### 1. Object Pooling for Game Pieces
```cpp
// src/gameplay/PiecePool.h
class PiecePool {
private:
std::vector<std::unique_ptr<Piece>> available;
std::vector<std::unique_ptr<Piece>> inUse;
public:
std::unique_ptr<Piece> acquire(PieceType type);
void release(std::unique_ptr<Piece> piece);
void preAllocate(size_t count);
};
```
### 2. Texture Atlas for UI Elements
```cpp
// src/graphics/TextureAtlas.h
class TextureAtlas {
private:
SDL_Texture* atlasTexture;
std::unordered_map<std::string, SDL_Rect> regions;
public:
void loadAtlas(const std::string& atlasPath, const std::string& configPath);
SDL_Rect getRegion(const std::string& name) const;
SDL_Texture* getTexture() const { return atlasTexture; }
};
```
### 3. Batch Rendering System
```cpp
// src/graphics/BatchRenderer.h
class BatchRenderer {
private:
struct RenderCommand {
SDL_Texture* texture;
SDL_Rect srcRect;
SDL_Rect dstRect;
};
std::vector<RenderCommand> commands;
public:
void addSprite(SDL_Texture* texture, const SDL_Rect& src, const SDL_Rect& dst);
void flush();
void clear();
};
```
### 4. Memory-Efficient Board Representation
```cpp
// Current: std::array<int, COLS*ROWS> board (40 integers = 160 bytes)
// Optimized: Bitset representation for filled/empty + color array for occupied cells
class OptimizedBoard {
private:
std::bitset<COLS * ROWS> occupied; // 25 bytes (200 bits)
std::array<uint8_t, COLS * ROWS> colors; // 200 bytes, but only for occupied cells
public:
bool isOccupied(int x, int y) const;
uint8_t getColor(int x, int y) const;
void setCell(int x, int y, uint8_t color);
void clearCell(int x, int y);
};
```
### 5. Cache-Friendly Data Structures
```cpp
// Group related data together for better cache locality
struct GameState {
// Hot data (frequently accessed)
std::array<uint8_t, COLS * ROWS> board;
Piece currentPiece;
int score;
int level;
int lines;
// Cold data (less frequently accessed)
std::vector<PieceType> bag;
Piece holdPiece;
bool gameOver;
bool paused;
};
```
## Performance Measurement
### 1. Add Profiling Infrastructure
```cpp
// src/core/Profiler.h
class Profiler {
private:
std::unordered_map<std::string, std::chrono::high_resolution_clock::time_point> startTimes;
std::unordered_map<std::string, double> averageTimes;
public:
void beginTimer(const std::string& name);
void endTimer(const std::string& name);
void printStats();
};
// Usage:
// profiler.beginTimer("GameLogic");
// game.update(deltaTime);
// profiler.endTimer("GameLogic");
```
### 2. Frame Rate Optimization
```cpp
// Target 60 FPS with consistent frame timing
class FrameRateManager {
private:
std::chrono::high_resolution_clock::time_point lastFrame;
double targetFrameTime = 1000.0 / 60.0; // 16.67ms
public:
void beginFrame();
void endFrame();
double getDeltaTime() const;
bool shouldSkipFrame() const;
};
```
## Expected Performance Gains
1. **Object Pooling**: 30-50% reduction in allocation overhead
2. **Texture Atlas**: 20-30% improvement in rendering performance
3. **Batch Rendering**: 40-60% reduction in draw calls
4. **Optimized Board**: 60% reduction in memory usage
5. **Cache Optimization**: 10-20% improvement in game logic performance
## Implementation Priority
1. **High Impact, Low Effort**: Profiling infrastructure, frame rate management
2. **Medium Impact, Medium Effort**: Object pooling, optimized board representation
3. **High Impact, High Effort**: Texture atlas, batch rendering system

View File

@ -0,0 +1,128 @@
# SOLID Principles Refactoring Plan
## Current Architecture Issues
### 1. Single Responsibility Principle (SRP) Violations
- `ApplicationManager` handles initialization, coordination, rendering coordination, and asset management
- `Game` class mixes game logic with some presentation concerns
### 2. Open/Closed Principle (OCP) Opportunities
- Hard-coded piece types and behaviors
- Limited extensibility for new game modes or rule variations
### 3. Dependency Inversion Principle (DIP) Missing
- Concrete dependencies instead of interfaces
- Direct instantiation rather than dependency injection
## Proposed Improvements
### 1. Extract Interfaces
```cpp
// src/core/interfaces/IRenderer.h
class IRenderer {
public:
virtual ~IRenderer() = default;
virtual void clear(uint8_t r, uint8_t g, uint8_t b, uint8_t a) = 0;
virtual void present() = 0;
virtual SDL_Renderer* getSDLRenderer() = 0;
};
// src/core/interfaces/IAudioSystem.h
class IAudioSystem {
public:
virtual ~IAudioSystem() = default;
virtual void playSound(const std::string& name) = 0;
virtual void playMusic(const std::string& name) = 0;
virtual void setMasterVolume(float volume) = 0;
};
// src/core/interfaces/IAssetLoader.h
class IAssetLoader {
public:
virtual ~IAssetLoader() = default;
virtual SDL_Texture* loadTexture(const std::string& path) = 0;
virtual void loadFont(const std::string& name, const std::string& path, int size) = 0;
};
```
### 2. Dependency Injection Container
```cpp
// src/core/ServiceContainer.h
class ServiceContainer {
private:
std::unordered_map<std::type_index, std::shared_ptr<void>> services;
public:
template<typename T>
void registerService(std::shared_ptr<T> service) {
services[std::type_index(typeid(T))] = service;
}
template<typename T>
std::shared_ptr<T> getService() {
auto it = services.find(std::type_index(typeid(T)));
if (it != services.end()) {
return std::static_pointer_cast<T>(it->second);
}
return nullptr;
}
};
```
### 3. Break Down ApplicationManager
```cpp
// src/core/ApplicationLifecycle.h
class ApplicationLifecycle {
public:
bool initialize(int argc, char* argv[]);
void run();
void shutdown();
};
// src/core/SystemCoordinator.h
class SystemCoordinator {
public:
void initializeSystems(ServiceContainer& container);
void updateSystems(double deltaTime);
void shutdownSystems();
};
```
### 4. Strategy Pattern for Game Rules
```cpp
// src/gameplay/interfaces/IGameRules.h
class IGameRules {
public:
virtual ~IGameRules() = default;
virtual int calculateScore(int linesCleared, int level) = 0;
virtual double getGravitySpeed(int level) = 0;
virtual bool shouldLevelUp(int lines) = 0;
};
// src/gameplay/rules/ClassicTetrisRules.h
class ClassicTetrisRules : public IGameRules {
public:
int calculateScore(int linesCleared, int level) override;
double getGravitySpeed(int level) override;
bool shouldLevelUp(int lines) override;
};
```
## Implementation Priority
1. **Phase 1**: Extract core interfaces (IRenderer, IAudioSystem)
2. **Phase 2**: Implement dependency injection container
3. **Phase 3**: Break down ApplicationManager responsibilities
4. **Phase 4**: Add strategy patterns for game rules
5. **Phase 5**: Improve testability with mock implementations
## Benefits
- **Testability**: Easy to mock dependencies for unit tests
- **Extensibility**: New features without modifying existing code
- **Maintainability**: Clear responsibilities and loose coupling
- **Flexibility**: Easy to swap implementations (e.g., different renderers)

309
docs/TESTING_STRATEGY.md Normal file
View File

@ -0,0 +1,309 @@
# Testing Strategy Enhancement
## Current Testing State
### Existing Tests
- ✅ GravityTests.cpp - Basic gravity manager testing
- ✅ Catch2 framework integration
- ✅ CTest integration in CMake
### Coverage Gaps
- ❌ Game logic testing (piece movement, rotation, line clearing)
- ❌ Collision detection testing
- ❌ Scoring system testing
- ❌ State management testing
- ❌ Integration tests
- ❌ Performance tests
## Comprehensive Testing Strategy
### 1. Unit Tests Expansion
```cpp
// tests/GameLogicTests.cpp
TEST_CASE("Piece Movement", "[game][movement]") {
Game game(0);
Piece originalPiece = game.current();
SECTION("Move left when possible") {
game.move(-1);
REQUIRE(game.current().x == originalPiece.x - 1);
}
SECTION("Cannot move left at boundary") {
// Move piece to left edge
while (game.current().x > 0) {
game.move(-1);
}
int edgeX = game.current().x;
game.move(-1);
REQUIRE(game.current().x == edgeX); // Should not move further
}
}
// tests/CollisionTests.cpp
TEST_CASE("Collision Detection", "[game][collision]") {
Game game(0);
SECTION("Piece collides with bottom") {
// Force piece to bottom
while (!game.isGameOver()) {
game.hardDrop();
if (game.isGameOver()) break;
}
// Verify collision behavior
}
SECTION("Piece collides with placed blocks") {
// Place a block manually
// Test collision with new piece
}
}
// tests/ScoringTests.cpp
TEST_CASE("Scoring System", "[game][scoring]") {
Game game(0);
int initialScore = game.score();
SECTION("Single line clear") {
// Set up board with almost complete line
// Clear line and verify score increase
}
SECTION("Tetris (4 lines)") {
// Set up board for Tetris
// Verify bonus scoring
}
}
```
### 2. Mock Objects for Testing
```cpp
// tests/mocks/MockRenderer.h
class MockRenderer : public IRenderer {
private:
mutable std::vector<std::string> calls;
public:
void clear(uint8_t r, uint8_t g, uint8_t b, uint8_t a) override {
calls.push_back("clear");
}
void present() override {
calls.push_back("present");
}
SDL_Renderer* getSDLRenderer() override {
return nullptr; // Mock implementation
}
const std::vector<std::string>& getCalls() const { return calls; }
void clearCalls() { calls.clear(); }
};
// tests/mocks/MockAudioSystem.h
class MockAudioSystem : public IAudioSystem {
private:
std::vector<std::string> playedSounds;
public:
void playSound(const std::string& name) override {
playedSounds.push_back(name);
}
void playMusic(const std::string& name) override {
playedSounds.push_back("music:" + name);
}
void setMasterVolume(float volume) override {
// Mock implementation
}
const std::vector<std::string>& getPlayedSounds() const { return playedSounds; }
};
```
### 3. Integration Tests
```cpp
// tests/integration/StateTransitionTests.cpp
TEST_CASE("State Transitions", "[integration][states]") {
ApplicationManager app;
// Mock dependencies
SECTION("Loading to Menu transition") {
// Simulate loading completion
// Verify menu state activation
}
SECTION("Menu to Game transition") {
// Simulate start game action
// Verify game state initialization
}
}
// tests/integration/GamePlayTests.cpp
TEST_CASE("Complete Game Session", "[integration][gameplay]") {
Game game(0);
SECTION("Play until first line clear") {
// Simulate complete game session
// Verify all systems work together
}
}
```
### 4. Performance Tests
```cpp
// tests/performance/PerformanceTests.cpp
TEST_CASE("Game Logic Performance", "[performance]") {
Game game(0);
SECTION("1000 piece drops should complete in reasonable time") {
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 1000; ++i) {
game.hardDrop();
if (game.isGameOver()) {
game.reset(0);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
REQUIRE(duration.count() < 100); // Should complete in under 100ms
}
}
// tests/performance/MemoryTests.cpp
TEST_CASE("Memory Usage", "[performance][memory]") {
SECTION("No memory leaks during gameplay") {
size_t initialMemory = getCurrentMemoryUsage();
{
Game game(0);
// Simulate gameplay
for (int i = 0; i < 100; ++i) {
game.hardDrop();
if (game.isGameOver()) game.reset(0);
}
}
size_t finalMemory = getCurrentMemoryUsage();
REQUIRE(finalMemory <= initialMemory + 1024); // Allow small overhead
}
}
```
### 5. Property-Based Testing
```cpp
// tests/property/PropertyTests.cpp
TEST_CASE("Property: Game state consistency", "[property]") {
Game game(0);
SECTION("Score never decreases") {
int previousScore = game.score();
// Perform random valid actions
for (int i = 0; i < 100; ++i) {
performRandomValidAction(game);
REQUIRE(game.score() >= previousScore);
previousScore = game.score();
}
}
SECTION("Board state remains valid") {
for (int i = 0; i < 1000; ++i) {
performRandomValidAction(game);
REQUIRE(isBoardStateValid(game));
}
}
}
```
### 6. Test Data Management
```cpp
// tests/fixtures/GameFixtures.h
class GameFixtures {
public:
static Game createGameWithAlmostFullLine() {
Game game(0);
// Set up specific board state
return game;
}
static Game createGameNearGameOver() {
Game game(0);
// Fill board almost to top
return game;
}
static std::vector<PieceType> createTetrisPieceSequence() {
return {I, O, T, S, Z, J, L};
}
};
```
## Test Automation & CI
### 1. GitHub Actions Configuration
```yaml
# .github/workflows/tests.yml
name: Tests
on: [push, pull_request]
jobs:
test:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [windows-latest, ubuntu-latest, macos-latest]
build-type: [Debug, Release]
steps:
- uses: actions/checkout@v3
- name: Install dependencies
run: |
# Install vcpkg and dependencies
- name: Configure CMake
run: cmake -B build -DCMAKE_BUILD_TYPE=${{ matrix.build-type }}
- name: Build
run: cmake --build build --config ${{ matrix.build-type }}
- name: Test
run: ctest --test-dir build --build-config ${{ matrix.build-type }}
```
### 2. Code Coverage
```cmake
# Add to CMakeLists.txt
option(ENABLE_COVERAGE "Enable code coverage" OFF)
if(ENABLE_COVERAGE)
target_compile_options(tetris PRIVATE --coverage)
target_link_libraries(tetris PRIVATE --coverage)
endif()
```
## Quality Metrics Targets
- **Unit Test Coverage**: > 80%
- **Integration Test Coverage**: > 60%
- **Performance Regression**: < 5% per release
- **Memory Leak Detection**: 0 leaks in test suite
- **Static Analysis**: 0 critical issues
## Implementation Priority
1. **Phase 1**: Core game logic unit tests (movement, rotation, collision)
2. **Phase 2**: Mock objects and dependency injection for testability
3. **Phase 3**: Integration tests for state management
4. **Phase 4**: Performance and memory tests
5. **Phase 5**: Property-based testing and fuzzing
6. **Phase 6**: CI/CD pipeline with automated testing

View File

@ -20,6 +20,12 @@
#pragma comment(lib, "mfuuid.lib")
#pragma comment(lib, "ole32.lib")
using Microsoft::WRL::ComPtr;
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
#endif
Audio& Audio::instance(){ static Audio inst; return inst; }
@ -277,3 +283,40 @@ void Audio::shutdown(){
if(mfStarted){ MFShutdown(); mfStarted=false; }
#endif
}
// IAudioSystem interface implementation
void Audio::playSound(const std::string& name) {
// This is a simplified implementation - in a full implementation,
// you would load sound effects by name from assets
// For now, we'll just trigger a generic sound effect
// In practice, this would load a sound file and play it via playSfx
}
void Audio::playMusic(const std::string& name) {
// This is a simplified implementation - in a full implementation,
// you would load music tracks by name
// For now, we'll just start the current playlist
if (!tracks.empty() && !playing) {
start();
}
}
void Audio::stopMusic() {
playing = false;
}
void Audio::setMasterVolume(float volume) {
m_masterVolume = std::max(0.0f, std::min(1.0f, volume));
}
void Audio::setMusicVolume(float volume) {
m_musicVolume = std::max(0.0f, std::min(1.0f, volume));
}
void Audio::setSoundVolume(float volume) {
m_sfxVolume = std::max(0.0f, std::min(1.0f, volume));
}
bool Audio::isMusicPlaying() const {
return playing;
}

View File

@ -8,6 +8,7 @@
#include <thread>
#include <mutex>
#include <atomic>
#include "../core/interfaces/IAudioSystem.h"
struct AudioTrack {
std::string path;
@ -18,9 +19,20 @@ struct AudioTrack {
bool ok = false;
};
class Audio {
class Audio : public IAudioSystem {
public:
static Audio& instance();
// IAudioSystem interface implementation
void playSound(const std::string& name) override;
void playMusic(const std::string& name) override;
void stopMusic() override;
void setMasterVolume(float volume) override;
void setMusicVolume(float volume) override;
void setSoundVolume(float volume) override;
bool isMusicPlaying() const override;
// Existing Audio class methods
bool init(); // initialize backend (MF on Windows)
void addTrack(const std::string& path); // decode MP3 -> PCM16 stereo 44100
void addTrackAsync(const std::string& path); // add track for background loading
@ -57,4 +69,9 @@ private:
struct SfxPlay { std::vector<int16_t> pcm; size_t cursor=0; };
std::vector<SfxPlay> activeSfx;
std::mutex sfxMutex;
// Volume control
float m_masterVolume = 1.0f;
float m_musicVolume = 1.0f;
float m_sfxVolume = 1.0f;
};

View File

@ -181,3 +181,30 @@ void GlobalState::resetAnimationState() {
fireworks.clear();
lastFireworkTime = 0;
}
void GlobalState::updateLogicalDimensions(int windowWidth, int windowHeight) {
// For now, keep logical dimensions proportional to window size
// You can adjust this logic based on your specific needs
// Option 1: Keep fixed aspect ratio and scale uniformly
const float targetAspect = static_cast<float>(Config::Logical::WIDTH) / static_cast<float>(Config::Logical::HEIGHT);
const float windowAspect = static_cast<float>(windowWidth) / static_cast<float>(windowHeight);
if (windowAspect > targetAspect) {
// Window is wider than target aspect - fit to height
currentLogicalHeight = Config::Logical::HEIGHT;
currentLogicalWidth = static_cast<int>(currentLogicalHeight * windowAspect);
} else {
// Window is taller than target aspect - fit to width
currentLogicalWidth = Config::Logical::WIDTH;
currentLogicalHeight = static_cast<int>(currentLogicalWidth / windowAspect);
}
// Ensure minimum sizes
currentLogicalWidth = std::max(currentLogicalWidth, 800);
currentLogicalHeight = std::max(currentLogicalHeight, 600);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"[GlobalState] Updated logical dimensions: %dx%d (window: %dx%d)",
currentLogicalWidth, currentLogicalHeight, windowWidth, windowHeight);
}

View File

@ -67,6 +67,10 @@ public:
SDL_Rect logicalVP{0, 0, 1200, 1000}; // Will use Config::Logical constants
float logicalScale = 1.0f;
// Dynamic logical dimensions (computed from window size)
int currentLogicalWidth = 1200;
int currentLogicalHeight = 1000;
// Fireworks system (for menu animation)
struct BlockParticle {
float x, y, vx, vy;
@ -88,6 +92,11 @@ public:
void createFirework(float x, float y);
void drawFireworks(SDL_Renderer* renderer, SDL_Texture* blocksTex);
// Logical dimensions management
void updateLogicalDimensions(int windowWidth, int windowHeight);
int getLogicalWidth() const { return currentLogicalWidth; }
int getLogicalHeight() const { return currentLogicalHeight; }
// Reset methods for different states
void resetGameState();
void resetUIState();

View File

@ -0,0 +1,92 @@
#pragma once
#include <memory>
#include <unordered_map>
#include <typeindex>
#include <stdexcept>
/**
* @brief Dependency injection container for managing services
*
* Provides a centralized way to register and retrieve services,
* enabling loose coupling and better testability.
*/
class ServiceContainer {
private:
std::unordered_map<std::type_index, std::shared_ptr<void>> services_;
public:
/**
* @brief Register a service instance
* @tparam T Service type
* @param service Shared pointer to service instance
*/
template<typename T>
void registerService(std::shared_ptr<T> service) {
services_[std::type_index(typeid(T))] = service;
}
/**
* @brief Get a service instance
* @tparam T Service type
* @return Shared pointer to service instance
* @throws std::runtime_error if service is not registered
*/
template<typename T>
std::shared_ptr<T> getService() {
auto it = services_.find(std::type_index(typeid(T)));
if (it != services_.end()) {
return std::static_pointer_cast<T>(it->second);
}
throw std::runtime_error("Service not registered: " + std::string(typeid(T).name()));
}
/**
* @brief Get a service instance (const version)
* @tparam T Service type
* @return Shared pointer to service instance
* @throws std::runtime_error if service is not registered
*/
template<typename T>
std::shared_ptr<const T> getService() const {
auto it = services_.find(std::type_index(typeid(T)));
if (it != services_.end()) {
return std::static_pointer_cast<const T>(it->second);
}
throw std::runtime_error("Service not registered: " + std::string(typeid(T).name()));
}
/**
* @brief Check if a service is registered
* @tparam T Service type
* @return true if service is registered, false otherwise
*/
template<typename T>
bool hasService() const {
return services_.find(std::type_index(typeid(T))) != services_.end();
}
/**
* @brief Unregister a service
* @tparam T Service type
*/
template<typename T>
void unregisterService() {
services_.erase(std::type_index(typeid(T)));
}
/**
* @brief Clear all registered services
*/
void clear() {
services_.clear();
}
/**
* @brief Get the number of registered services
* @return Number of registered services
*/
size_t getServiceCount() const {
return services_.size();
}
};

View File

@ -1,30 +1,35 @@
#include "ApplicationManager.h"
#include "StateManager.h"
#include "InputManager.h"
#include "../state/StateManager.h"
#include "../input/InputManager.h"
#include "../interfaces/IAudioSystem.h"
#include "../interfaces/IRenderer.h"
#include "../interfaces/IAssetLoader.h"
#include "../interfaces/IInputHandler.h"
#include <filesystem>
#include "../audio/Audio.h"
#include "../audio/SoundEffect.h"
#include "../persistence/Scores.h"
#include "../states/State.h"
#include "../states/LoadingState.h"
#include "../states/MenuState.h"
#include "../states/LevelSelectorState.h"
#include "../states/PlayingState.h"
#include "AssetManager.h"
#include "Config.h"
#include "GlobalState.h"
#include "../graphics/RenderManager.h"
#include "../graphics/Font.h"
#include "../graphics/Starfield3D.h"
#include "../graphics/Starfield.h"
#include "../graphics/GameRenderer.h"
#include "../gameplay/Game.h"
#include "../gameplay/LineEffect.h"
#include "../../audio/Audio.h"
#include "../../audio/SoundEffect.h"
#include "../../persistence/Scores.h"
#include "../../states/State.h"
#include "../../states/LoadingState.h"
#include "../../states/MenuState.h"
#include "../../states/LevelSelectorState.h"
#include "../../states/PlayingState.h"
#include "../assets/AssetManager.h"
#include "../Config.h"
#include "../GlobalState.h"
#include "../../graphics/renderers/RenderManager.h"
#include "../../graphics/ui/Font.h"
#include "../../graphics/effects/Starfield3D.h"
#include "../../graphics/effects/Starfield.h"
#include "../../graphics/renderers/GameRenderer.h"
#include "../../gameplay/core/Game.h"
#include "../../gameplay/effects/LineEffect.h"
#include <SDL3/SDL.h>
#include <SDL3_ttf/SDL_ttf.h>
#include <iostream>
#include <cmath>
#include <fstream>
#include <algorithm>
ApplicationManager::ApplicationManager() = default;
@ -33,6 +38,115 @@ static void traceFile(const char* msg) {
if (f) f << msg << "\n";
}
// Helper: extracted from inline lambda to avoid MSVC parsing issues with complex lambdas
void ApplicationManager::renderLoading(ApplicationManager* app, RenderManager& renderer) {
// Clear background first
renderer.clear(0, 0, 0, 255);
// Use 3D starfield for loading screen (full screen)
if (app->m_starfield3D) {
int winW_actual = 0, winH_actual = 0;
if (app->m_renderManager) app->m_renderManager->getWindowSize(winW_actual, winH_actual);
if (winW_actual > 0 && winH_actual > 0) app->m_starfield3D->resize(winW_actual, winH_actual);
app->m_starfield3D->draw(renderer.getSDLRenderer());
}
SDL_Rect logicalVP = {0,0,0,0};
float logicalScale = 1.0f;
if (app->m_renderManager) {
logicalVP = app->m_renderManager->getLogicalViewport();
logicalScale = app->m_renderManager->getLogicalScale();
}
SDL_SetRenderViewport(renderer.getSDLRenderer(), &logicalVP);
SDL_SetRenderScale(renderer.getSDLRenderer(), logicalScale, logicalScale);
float contentOffsetX = 0.0f;
float contentOffsetY = 0.0f;
auto drawRectOriginal = [&](float x, float y, float w, float h, SDL_Color c) {
SDL_SetRenderDrawColor(renderer.getSDLRenderer(), c.r, c.g, c.b, c.a);
SDL_FRect fr;
fr.x = x + contentOffsetX;
fr.y = y + contentOffsetY;
fr.w = w;
fr.h = h;
SDL_RenderFillRect(renderer.getSDLRenderer(), &fr);
};
// Compute dynamic logical width/height based on the RenderManager's
// computed viewport and scale so the loading UI sizes itself to the
// actual content area rather than a hardcoded design size.
float LOGICAL_W = static_cast<float>(Config::Logical::WIDTH);
float LOGICAL_H = static_cast<float>(Config::Logical::HEIGHT);
if (logicalScale > 0.0f && logicalVP.w > 0 && logicalVP.h > 0) {
// logicalVP is in window pixels; divide by scale to get logical units
LOGICAL_W = static_cast<float>(logicalVP.w) / logicalScale;
LOGICAL_H = static_cast<float>(logicalVP.h) / logicalScale;
}
const bool isLimitedHeight = LOGICAL_H < 450.0f;
SDL_Texture* logoTex = app->m_assetManager->getTexture("logo");
const float logoHeight = logoTex ? (isLimitedHeight ? LOGICAL_H * 0.25f : LOGICAL_H * 0.4f) : 0;
const float loadingTextHeight = 20;
const float barHeight = 20;
const float barPaddingVertical = isLimitedHeight ? 15 : 35;
const float percentTextHeight = 24;
const float spacingBetweenElements = isLimitedHeight ? 5 : 15;
const float totalContentHeight = logoHeight + (logoHeight > 0 ? spacingBetweenElements : 0) + loadingTextHeight + barPaddingVertical + barHeight + spacingBetweenElements + percentTextHeight;
float currentY = (LOGICAL_H - totalContentHeight) / 2.0f;
if (logoTex) {
const int lw = 872, lh = 273;
const float maxLogoWidth = std::min(LOGICAL_W * 0.9f, 600.0f);
const float availableHeight = isLimitedHeight ? LOGICAL_H * 0.25f : LOGICAL_H * 0.4f;
const float availableWidth = maxLogoWidth;
const float scaleFactorWidth = availableWidth / static_cast<float>(lw);
const float scaleFactorHeight = availableHeight / static_cast<float>(lh);
const float scaleFactor = std::min(scaleFactorWidth, scaleFactorHeight);
const float displayWidth = lw * scaleFactor;
const float displayHeight = lh * scaleFactor;
const float logoX = (LOGICAL_W - displayWidth) / 2.0f;
SDL_FRect dst{logoX + contentOffsetX, currentY + contentOffsetY, displayWidth, displayHeight};
SDL_RenderTexture(renderer.getSDLRenderer(), logoTex, nullptr, &dst);
currentY += displayHeight + spacingBetweenElements;
}
FontAtlas* pixelFont = (FontAtlas*)app->m_assetManager->getFont("pixel_font");
FontAtlas* fallbackFont = (FontAtlas*)app->m_assetManager->getFont("main_font");
FontAtlas* loadingFont = pixelFont ? pixelFont : fallbackFont;
if (loadingFont) {
const std::string loadingText = "LOADING";
int tW=0, tH=0; loadingFont->measure(loadingText, 1.0f, tW, tH);
float textX = (LOGICAL_W - (float)tW) * 0.5f;
loadingFont->draw(renderer.getSDLRenderer(), textX + contentOffsetX, currentY + contentOffsetY, loadingText, 1.0f, {255,204,0,255});
}
currentY += loadingTextHeight + barPaddingVertical;
const int barW = 400, barH = 20;
const int bx = (LOGICAL_W - barW) / 2;
float loadingProgress = app->m_assetManager->getLoadingProgress();
drawRectOriginal(bx - 3, currentY - 3, barW + 6, barH + 6, {68,68,80,255});
drawRectOriginal(bx, currentY, barW, barH, {34,34,34,255});
drawRectOriginal(bx, currentY, int(barW * loadingProgress), barH, {255,204,0,255});
currentY += barH + spacingBetweenElements;
if (loadingFont) {
int percentage = int(loadingProgress * 100);
char percentText[16];
std::snprintf(percentText, sizeof(percentText), "%d%%", percentage);
std::string pStr(percentText);
int pW=0, pH=0; loadingFont->measure(pStr, 1.5f, pW, pH);
float percentX = (LOGICAL_W - (float)pW) * 0.5f;
loadingFont->draw(renderer.getSDLRenderer(), percentX + contentOffsetX, currentY + contentOffsetY, pStr, 1.5f, {255,204,0,255});
}
SDL_SetRenderViewport(renderer.getSDLRenderer(), nullptr);
SDL_SetRenderScale(renderer.getSDLRenderer(), 1.0f, 1.0f);
}
ApplicationManager::~ApplicationManager() {
if (m_initialized) {
shutdown();
@ -50,6 +164,9 @@ bool ApplicationManager::initialize(int argc, char* argv[]) {
// Initialize GlobalState
GlobalState::instance().initialize();
// Set initial logical dimensions
GlobalState::instance().updateLogicalDimensions(m_windowWidth, m_windowHeight);
// Initialize SDL first
if (!initializeSDL()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Failed to initialize SDL");
@ -63,6 +180,9 @@ bool ApplicationManager::initialize(int argc, char* argv[]) {
return false;
}
// Register services for dependency injection
registerServices();
// Initialize game systems
if (!initializeGame()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Failed to initialize game systems");
@ -212,6 +332,7 @@ bool ApplicationManager::initializeManagers() {
m_renderManager->setFullscreen(!fs);
}
// Dont also forward Alt+Enter as an Enter keypress to states (prevents accidental "Start")
// Don't also forward Alt+Enter as an Enter keypress to states (prevents accidental "Start")
consume = true;
}
@ -269,6 +390,9 @@ bool ApplicationManager::initializeManagers() {
// Handle window resize events for RenderManager
if (we.type == SDL_EVENT_WINDOW_RESIZED && m_renderManager) {
m_renderManager->handleWindowResize(we.data1, we.data2);
// Update GlobalState logical dimensions when window resizes
GlobalState::instance().updateLogicalDimensions(we.data1, we.data2);
}
// Forward all window events to StateManager
@ -289,6 +413,45 @@ bool ApplicationManager::initializeManagers() {
return true;
}
void ApplicationManager::registerServices() {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Registering services for dependency injection...");
// Register concrete implementations as interface singletons
if (m_renderManager) {
std::shared_ptr<RenderManager> renderPtr(m_renderManager.get(), [](RenderManager*) {
// Custom deleter that does nothing since the unique_ptr manages lifetime
});
m_serviceContainer.registerSingleton<IRenderer>(renderPtr);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Registered IRenderer service");
}
if (m_assetManager) {
std::shared_ptr<AssetManager> assetPtr(m_assetManager.get(), [](AssetManager*) {
// Custom deleter that does nothing since the unique_ptr manages lifetime
});
m_serviceContainer.registerSingleton<IAssetLoader>(assetPtr);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Registered IAssetLoader service");
}
if (m_inputManager) {
std::shared_ptr<InputManager> inputPtr(m_inputManager.get(), [](InputManager*) {
// Custom deleter that does nothing since the unique_ptr manages lifetime
});
m_serviceContainer.registerSingleton<IInputHandler>(inputPtr);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Registered IInputHandler service");
}
// Register Audio system singleton
auto& audioInstance = Audio::instance();
auto audioPtr = std::shared_ptr<Audio>(&audioInstance, [](Audio*) {
// Custom deleter that does nothing since Audio is a singleton
});
m_serviceContainer.registerSingleton<IAudioSystem>(audioPtr);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Registered IAudioSystem service");
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Service registration completed successfully");
}
bool ApplicationManager::initializeGame() {
// Load essential assets using AssetManager
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Loading essential assets...");
@ -496,142 +659,12 @@ void ApplicationManager::setupStateHandlers() {
};
// Loading State Handlers (matching original main.cpp implementation)
m_stateManager->registerRenderHandler(AppState::Loading,
[this, drawRect](RenderManager& renderer) {
// Clear background first
renderer.clear(0, 0, 0, 255);
// Use 3D starfield for loading screen (full screen)
// Ensure starfield uses actual window size so center and projection are correct
if (m_starfield3D) {
int winW_actual = 0, winH_actual = 0;
if (m_renderManager) {
m_renderManager->getWindowSize(winW_actual, winH_actual);
}
if (winW_actual > 0 && winH_actual > 0) {
m_starfield3D->resize(winW_actual, winH_actual);
}
m_starfield3D->draw(renderer.getSDLRenderer());
}
// Set viewport and scaling for content using ACTUAL window size
// Use RenderManager's computed logical viewport and scale so all states share the exact math
SDL_Rect logicalVP = {0,0,0,0};
float logicalScale = 1.0f;
if (m_renderManager) {
logicalVP = m_renderManager->getLogicalViewport();
logicalScale = m_renderManager->getLogicalScale();
}
SDL_SetRenderViewport(renderer.getSDLRenderer(), &logicalVP);
SDL_SetRenderScale(renderer.getSDLRenderer(), logicalScale, logicalScale);
// Calculate actual content area (centered within the viewport)
// Since we already have a centered viewport, content should be drawn at (0,0) in logical space
// The viewport itself handles the centering, so no additional offset is needed
float contentOffsetX = 0.0f;
float contentOffsetY = 0.0f;
auto drawRectOriginal = [&](float x, float y, float w, float h, SDL_Color c) {
SDL_SetRenderDrawColor(renderer.getSDLRenderer(), c.r, c.g, c.b, c.a);
SDL_FRect fr{x + contentOffsetX, y + contentOffsetY, w, h};
SDL_RenderFillRect(renderer.getSDLRenderer(), &fr);
// Extracted to a helper to avoid complex inline lambda parsing issues on MSVC
auto loadingRenderForwarder = [this](RenderManager& renderer) {
// forward to helper defined below
renderLoading(this, renderer);
};
// Calculate dimensions for perfect centering (like JavaScript version)
const bool isLimitedHeight = LOGICAL_H < 450;
SDL_Texture* logoTex = m_assetManager->getTexture("logo");
const float logoHeight = logoTex ? (isLimitedHeight ? LOGICAL_H * 0.25f : LOGICAL_H * 0.4f) : 0;
const float loadingTextHeight = 20; // Height of "LOADING" text (match JS)
const float barHeight = 20; // Loading bar height (match JS)
const float barPaddingVertical = isLimitedHeight ? 15 : 35;
const float percentTextHeight = 24; // Height of percentage text
const float spacingBetweenElements = isLimitedHeight ? 5 : 15;
// Total content height
const float totalContentHeight = logoHeight +
(logoHeight > 0 ? spacingBetweenElements : 0) +
loadingTextHeight +
barPaddingVertical +
barHeight +
spacingBetweenElements +
percentTextHeight;
// Start Y position for perfect vertical centering
float currentY = (LOGICAL_H - totalContentHeight) / 2.0f;
// Draw logo (centered, static like JavaScript version)
if (logoTex) {
// Use the same original large logo dimensions as JS (we used a half-size BMP previously)
const int lw = 872, lh = 273;
// Cap logo width similar to JS UI.MAX_LOGO_WIDTH (600) and available screen space
const float maxLogoWidth = std::min(LOGICAL_W * 0.9f, 600.0f);
const float availableHeight = isLimitedHeight ? LOGICAL_H * 0.25f : LOGICAL_H * 0.4f;
const float availableWidth = maxLogoWidth;
const float scaleFactorWidth = availableWidth / static_cast<float>(lw);
const float scaleFactorHeight = availableHeight / static_cast<float>(lh);
const float scaleFactor = std::min(scaleFactorWidth, scaleFactorHeight);
const float displayWidth = lw * scaleFactor;
const float displayHeight = lh * scaleFactor;
const float logoX = (LOGICAL_W - displayWidth) / 2.0f;
SDL_FRect dst{logoX + contentOffsetX, currentY + contentOffsetY, displayWidth, displayHeight};
SDL_RenderTexture(renderer.getSDLRenderer(), logoTex, nullptr, &dst);
currentY += displayHeight + spacingBetweenElements;
}
// Draw "LOADING" text (centered, using pixel font with fallback to main_font)
FontAtlas* pixelFont = (FontAtlas*)m_assetManager->getFont("pixel_font");
FontAtlas* fallbackFont = (FontAtlas*)m_assetManager->getFont("main_font");
FontAtlas* loadingFont = pixelFont ? pixelFont : fallbackFont;
if (loadingFont) {
const std::string loadingText = "LOADING";
int tW=0, tH=0; loadingFont->measure(loadingText, 1.0f, tW, tH);
float textX = (LOGICAL_W - (float)tW) * 0.5f;
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Rendering LOADING text at (%f,%f)", textX + contentOffsetX, currentY + contentOffsetY);
loadingFont->draw(renderer.getSDLRenderer(), textX + contentOffsetX, currentY + contentOffsetY, loadingText, 1.0f, {255, 204, 0, 255});
} else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION, "No loading font available to render LOADING text");
}
currentY += loadingTextHeight + barPaddingVertical;
// Draw loading bar (like JavaScript version)
const int barW = 400, barH = 20;
const int bx = (LOGICAL_W - barW) / 2;
float loadingProgress = m_assetManager->getLoadingProgress();
// Bar border (dark gray) - using drawRect which adds content offset
drawRectOriginal(bx - 3, currentY - 3, barW + 6, barH + 6, {68, 68, 80, 255});
// Bar background (darker gray)
drawRectOriginal(bx, currentY, barW, barH, {34, 34, 34, 255});
// Progress bar (gold color)
drawRectOriginal(bx, currentY, int(barW * loadingProgress), barH, {255, 204, 0, 255});
currentY += barH + spacingBetweenElements;
// Draw percentage text (centered, using loadingFont)
if (loadingFont) {
int percentage = int(loadingProgress * 100);
char percentText[16];
std::snprintf(percentText, sizeof(percentText), "%d%%", percentage);
std::string pStr(percentText);
int pW=0, pH=0; loadingFont->measure(pStr, 1.5f, pW, pH);
float percentX = (LOGICAL_W - (float)pW) * 0.5f;
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Rendering percent text '%s' at (%f,%f)", percentText, percentX + contentOffsetX, currentY + contentOffsetY);
loadingFont->draw(renderer.getSDLRenderer(), percentX + contentOffsetX, currentY + contentOffsetY, pStr, 1.5f, {255, 204, 0, 255});
}
// Reset viewport and scale
SDL_SetRenderViewport(renderer.getSDLRenderer(), nullptr);
SDL_SetRenderScale(renderer.getSDLRenderer(), 1.0f, 1.0f);
});
m_stateManager->registerRenderHandler(AppState::Loading, loadingRenderForwarder);
m_stateManager->registerUpdateHandler(AppState::Loading,
[this](float deltaTime) {
@ -729,6 +762,7 @@ void ApplicationManager::setupStateHandlers() {
globalState.updateFireworks(deltaTime);
// Start music as soon as at least one track has decoded (dont wait for all)
// Start music as soon as at least one track has decoded (don't wait for all)
if (m_musicEnabled && !m_musicStarted) {
if (Audio::instance().getLoadedTrackCount() > 0) {
Audio::instance().shuffle();
@ -785,16 +819,20 @@ void ApplicationManager::setupStateHandlers() {
float lx = (mx - logicalVP.x) / logicalScale;
float ly = (my - logicalVP.y) / logicalScale;
// Compute dynamic logical dimensions from viewport/scale
float dynW = (logicalScale > 0.f && logicalVP.w > 0) ? (float)logicalVP.w / logicalScale : (float)Config::Logical::WIDTH;
float dynH = (logicalScale > 0.f && logicalVP.h > 0) ? (float)logicalVP.h / logicalScale : (float)Config::Logical::HEIGHT;
// Respect settings popup
if (m_showSettingsPopup) {
m_showSettingsPopup = false;
} else {
bool isSmall = ((Config::Logical::WIDTH * logicalScale) < 700.0f);
float btnW = isSmall ? (Config::Logical::WIDTH * 0.4f) : 300.0f;
bool isSmall = ((dynW * logicalScale) < 700.0f);
float btnW = isSmall ? (dynW * 0.4f) : 300.0f;
float btnH = isSmall ? 60.0f : 70.0f;
float btnCX = Config::Logical::WIDTH * 0.5f;
float btnCX = dynW * 0.5f;
const float btnYOffset = 40.0f;
float btnCY = Config::Logical::HEIGHT * 0.86f + btnYOffset;
float btnCY = dynH * 0.86f + btnYOffset;
SDL_FRect playBtn{btnCX - btnW * 0.6f - btnW/2.0f, btnCY - btnH/2.0f, btnW, btnH};
SDL_FRect levelBtn{btnCX + btnW * 0.6f - btnW/2.0f, btnCY - btnH/2.0f, btnW, btnH};
@ -806,7 +844,7 @@ void ApplicationManager::setupStateHandlers() {
m_stateManager->setState(AppState::LevelSelector);
} else {
// Settings area detection (top-right small area)
SDL_FRect settingsBtn{Config::Logical::WIDTH - 60, 10, 50, 30};
SDL_FRect settingsBtn{dynW - 60, 10, 50, 30};
if (lx >= settingsBtn.x && lx <= settingsBtn.x + settingsBtn.w && ly >= settingsBtn.y && ly <= settingsBtn.y + settingsBtn.h) {
m_showSettingsPopup = true;
}
@ -826,12 +864,15 @@ void ApplicationManager::setupStateHandlers() {
float lx = (mx - logicalVP.x) / logicalScale;
float ly = (my - logicalVP.y) / logicalScale;
if (!m_showSettingsPopup) {
bool isSmall = ((Config::Logical::WIDTH * logicalScale) < 700.0f);
float btnW = isSmall ? (Config::Logical::WIDTH * 0.4f) : 300.0f;
// Compute dynamic logical dimensions
float dynW = (logicalScale > 0.f && logicalVP.w > 0) ? (float)logicalVP.w / logicalScale : (float)Config::Logical::WIDTH;
float dynH = (logicalScale > 0.f && logicalVP.h > 0) ? (float)logicalVP.h / logicalScale : (float)Config::Logical::HEIGHT;
bool isSmall = ((dynW * logicalScale) < 700.0f);
float btnW = isSmall ? (dynW * 0.4f) : 300.0f;
float btnH = isSmall ? 60.0f : 70.0f;
float btnCX = Config::Logical::WIDTH * 0.5f;
float btnCX = dynW * 0.5f;
const float btnYOffset = 40.0f;
float btnCY = Config::Logical::HEIGHT * 0.86f + btnYOffset;
float btnCY = dynH * 0.86f + btnYOffset;
SDL_FRect playBtn{btnCX - btnW * 0.6f - btnW/2.0f, btnCY - btnH/2.0f, btnW, btnH};
SDL_FRect levelBtn{btnCX + btnW * 0.6f - btnW/2.0f, btnCY - btnH/2.0f, btnW, btnH};
m_hoveredButton = -1;
@ -958,6 +999,7 @@ void ApplicationManager::setupStateHandlers() {
m_cachedBgLevel = bgLevel;
} else {
m_cachedBgLevel = -1; // dont change if missing
m_cachedBgLevel = -1; // don't change if missing
if (s) SDL_DestroySurface(s);
}
}
@ -1140,6 +1182,98 @@ void ApplicationManager::setupStateHandlers() {
m_stateManager->setState(AppState::GameOver);
}
});
// Debug overlay: show current window and logical sizes on the right side of the screen
auto debugOverlay = [this](RenderManager& renderer) {
// Window size
int winW = 0, winH = 0;
renderer.getWindowSize(winW, winH);
// Logical viewport and scale
SDL_Rect logicalVP{0,0,0,0};
float logicalScale = 1.0f;
if (m_renderManager) {
logicalVP = m_renderManager->getLogicalViewport();
logicalScale = m_renderManager->getLogicalScale();
}
// Use dynamic logical dimensions from GlobalState
float LOGICAL_W = static_cast<float>(GlobalState::instance().getLogicalWidth());
float LOGICAL_H = static_cast<float>(GlobalState::instance().getLogicalHeight());
// Use logical viewport so overlay is aligned with game content
SDL_SetRenderViewport(renderer.getSDLRenderer(), &logicalVP);
SDL_SetRenderScale(renderer.getSDLRenderer(), logicalScale, logicalScale);
// Choose font (pixel first, fallback to main)
FontAtlas* pixelFont = (FontAtlas*)(m_assetManager ? m_assetManager->getFont("pixel_font") : nullptr);
FontAtlas* mainFont = (FontAtlas*)(m_assetManager ? m_assetManager->getFont("main_font") : nullptr);
FontAtlas* font = pixelFont ? pixelFont : mainFont;
// Inline small helper for drawing a filled rect in logical coords
auto fillRect = [&](float x, float y, float w, float h, SDL_Color c) {
SDL_SetRenderDrawColor(renderer.getSDLRenderer(), c.r, c.g, c.b, c.a);
SDL_FRect r{ x, y, w, h };
SDL_RenderFillRect(renderer.getSDLRenderer(), &r);
};
// Prepare text lines
char buf[128];
std::snprintf(buf, sizeof(buf), "Win: %d x %d", winW, winH);
std::string sWin(buf);
std::snprintf(buf, sizeof(buf), "Logical: %.0f x %.0f", LOGICAL_W, LOGICAL_H);
std::string sLogical(buf);
std::snprintf(buf, sizeof(buf), "Scale: %.2f", logicalScale);
std::string sScale(buf);
// Determine size of longest line
int w1=0,h1=0, w2=0,h2=0, w3=0,h3=0;
if (font) {
font->measure(sWin, 1.0f, w1, h1);
font->measure(sLogical, 1.0f, w2, h2);
font->measure(sScale, 1.0f, w3, h3);
}
int maxW = std::max({w1,w2,w3});
int totalH = (h1 + h2 + h3) + 8; // small padding
// Position based on actual screen width (center horizontally)
const float margin = 8.0f;
// float x = (LOGICAL_W - (float)maxW) * 0.5f; // Center horizontally
// float y = margin;
// Desired position in window (pixel) coords
int winW_px = 0, winH_px = 0;
renderer.getWindowSize(winW_px, winH_px);
float desiredWinX = (float(winW_px) - (float)maxW) * 0.5f; // center on full window width
float desiredWinY = margin; // near top of the window
// Convert window coords to logical coords under current viewport/scale
float invScale = (logicalScale > 0.0f) ? (1.0f / logicalScale) : 1.0f;
float x = (desiredWinX - float(logicalVP.x)) * invScale;
float y = (desiredWinY - float(logicalVP.y)) * invScale;
// Draw background box for readability
fillRect(x - 6.0f, y - 6.0f, (float)maxW + 12.0f, (float)totalH + 8.0f, {0, 0, 0, 180});
// Draw text lines
SDL_Color textColor = {255, 204, 0, 255};
if (font) {
font->draw(renderer.getSDLRenderer(), x, y, sWin, 1.0f, textColor);
font->draw(renderer.getSDLRenderer(), x, y + (float)h1, sLogical, 1.0f, textColor);
font->draw(renderer.getSDLRenderer(), x, y + (float)(h1 + h2), sScale, 1.0f, textColor);
}
// Reset viewport/scale
SDL_SetRenderViewport(renderer.getSDLRenderer(), nullptr);
SDL_SetRenderScale(renderer.getSDLRenderer(), 1.0f, 1.0f);
};
// Register debug overlay for all primary states so it draws on top
if (m_stateManager) {
m_stateManager->registerRenderHandler(AppState::Loading, debugOverlay);
m_stateManager->registerRenderHandler(AppState::Menu, debugOverlay);
m_stateManager->registerRenderHandler(AppState::LevelSelector, debugOverlay);
m_stateManager->registerRenderHandler(AppState::Playing, debugOverlay);
m_stateManager->registerRenderHandler(AppState::GameOver, debugOverlay);
}
}
void ApplicationManager::processEvents() {

View File

@ -1,7 +1,8 @@
#pragma once
#include "Config.h"
#include "../states/State.h"
#include "../Config.h"
#include "../../states/State.h"
#include "../container/ServiceContainer.h"
#include <memory>
#include <string>
@ -52,12 +53,18 @@ public:
AssetManager* getAssetManager() const { return m_assetManager.get(); }
StateManager* getStateManager() const { return m_stateManager.get(); }
// Service container access
ServiceContainer& getServiceContainer() { return m_serviceContainer; }
private:
// Helper used by setupStateHandlers (defined in cpp)
static void renderLoading(ApplicationManager* app, RenderManager& renderer);
// Initialization methods
bool initializeSDL();
bool initializeManagers();
bool initializeGame();
void setupStateHandlers();
void registerServices();
// Main loop methods
void processEvents();
@ -74,6 +81,9 @@ private:
std::unique_ptr<AssetManager> m_assetManager;
std::unique_ptr<StateManager> m_stateManager;
// Dependency injection container
ServiceContainer m_serviceContainer;
// Visual effects
std::unique_ptr<Starfield3D> m_starfield3D;
std::unique_ptr<Starfield> m_starfield;

View File

@ -1,7 +1,7 @@
#include "AssetManager.h"
#include "../graphics/Font.h"
#include "../audio/Audio.h"
#include "../audio/SoundEffect.h"
#include "../../graphics/ui/Font.h"
#include "../../audio/Audio.h"
#include "../../audio/SoundEffect.h"
#include <SDL3/SDL.h>
#include <SDL3_ttf/SDL_ttf.h>
#include <filesystem>
@ -443,3 +443,39 @@ float AssetManager::getLoadingProgress() const {
return assetProgress + musicProgress;
}
// IAssetLoader interface implementation
SDL_Texture* AssetManager::loadTextureFromPath(const std::string& path) {
// Use the path as both ID and filepath for the interface implementation
return loadTexture(path, path);
}
bool AssetManager::loadFontAsset(const std::string& name, const std::string& path, int size) {
// Delegate to the existing loadFont method
return loadFont(name, path, size);
}
bool AssetManager::loadAudioAsset(const std::string& name, const std::string& path) {
return loadSoundEffect(name, path);
}
SDL_Texture* AssetManager::getTextureAsset(const std::string& name) {
// Delegate to the existing getTexture method
return getTexture(name);
}
bool AssetManager::hasAsset(const std::string& name) const {
return m_textures.find(name) != m_textures.end() ||
m_fonts.find(name) != m_fonts.end();
}
void AssetManager::unloadAsset(const std::string& name) {
// Try to unload as texture first, then as font
if (!unloadTexture(name)) {
unloadFont(name);
}
}
void AssetManager::unloadAll() {
shutdown();
}

View File

@ -6,6 +6,8 @@
#include <unordered_map>
#include <memory>
#include <functional>
#include "../interfaces/IAssetLoader.h"
#include "../interfaces/IAssetLoader.h"
// Forward declarations
class FontAtlas;
@ -28,7 +30,7 @@ class SoundEffectManager;
* - Dependency Inversion: Uses interfaces for audio systems
* - Interface Segregation: Separate methods for different asset types
*/
class AssetManager {
class AssetManager : public IAssetLoader {
public:
AssetManager();
~AssetManager();
@ -37,7 +39,16 @@ public:
bool initialize(SDL_Renderer* renderer);
void shutdown();
// Texture management
// IAssetLoader interface implementation
SDL_Texture* loadTextureFromPath(const std::string& path) override;
bool loadFontAsset(const std::string& name, const std::string& path, int size) override;
bool loadAudioAsset(const std::string& name, const std::string& path) override;
SDL_Texture* getTextureAsset(const std::string& name) override;
bool hasAsset(const std::string& name) const override;
void unloadAsset(const std::string& name) override;
void unloadAll() override;
// Existing AssetManager methods with specific implementations
SDL_Texture* loadTexture(const std::string& id, const std::string& filepath);
SDL_Texture* getTexture(const std::string& id) const;
bool unloadTexture(const std::string& id);

View File

@ -0,0 +1,93 @@
#pragma once
#include <memory>
#include <unordered_map>
#include <typeindex>
#include <functional>
/**
* @brief Simple dependency injection container
*
* Provides service registration and resolution for dependency injection.
* Supports both singleton and factory-based service creation.
*/
class ServiceContainer {
public:
ServiceContainer() = default;
~ServiceContainer() = default;
/**
* @brief Register a singleton service instance
* @tparam TInterface Interface type
* @tparam TImplementation Implementation type
* @param instance Shared pointer to the service instance
*/
template<typename TInterface, typename TImplementation>
void registerSingleton(std::shared_ptr<TImplementation> instance) {
static_assert(std::is_base_of_v<TInterface, TImplementation>,
"TImplementation must inherit from TInterface");
m_singletons[std::type_index(typeid(TInterface))] = instance;
}
/**
* @brief Register a factory function for service creation
* @tparam TInterface Interface type
* @param factory Factory function that creates the service
*/
template<typename TInterface>
void registerFactory(std::function<std::shared_ptr<TInterface>()> factory) {
m_factories[std::type_index(typeid(TInterface))] = [factory]() -> std::shared_ptr<void> {
return std::static_pointer_cast<void>(factory());
};
}
/**
* @brief Resolve a service by its interface type
* @tparam TInterface Interface type to resolve
* @return Shared pointer to the service instance, nullptr if not found
*/
template<typename TInterface>
std::shared_ptr<TInterface> resolve() {
std::type_index typeIndex(typeid(TInterface));
// Check singletons first
auto singletonIt = m_singletons.find(typeIndex);
if (singletonIt != m_singletons.end()) {
return std::static_pointer_cast<TInterface>(singletonIt->second);
}
// Check factories
auto factoryIt = m_factories.find(typeIndex);
if (factoryIt != m_factories.end()) {
auto instance = factoryIt->second();
return std::static_pointer_cast<TInterface>(instance);
}
return nullptr;
}
/**
* @brief Check if a service is registered
* @tparam TInterface Interface type to check
* @return true if service is registered, false otherwise
*/
template<typename TInterface>
bool isRegistered() const {
std::type_index typeIndex(typeid(TInterface));
return m_singletons.find(typeIndex) != m_singletons.end() ||
m_factories.find(typeIndex) != m_factories.end();
}
/**
* @brief Clear all registered services
*/
void clear() {
m_singletons.clear();
m_factories.clear();
}
private:
std::unordered_map<std::type_index, std::shared_ptr<void>> m_singletons;
std::unordered_map<std::type_index, std::function<std::shared_ptr<void>()>> m_factories;
};

View File

@ -294,3 +294,67 @@ void InputManager::resetDAS() {
m_dasState.repeatTimer = 0.0f;
m_dasState.activeKey = SDL_SCANCODE_UNKNOWN;
}
// IInputHandler interface implementation
bool InputManager::processEvent(const SDL_Event& event) {
// Process individual event and return if it was handled
switch (event.type) {
case SDL_EVENT_KEY_DOWN:
case SDL_EVENT_KEY_UP:
handleKeyEvent(event.key);
return true;
case SDL_EVENT_MOUSE_BUTTON_DOWN:
case SDL_EVENT_MOUSE_BUTTON_UP:
handleMouseButtonEvent(event.button);
return true;
case SDL_EVENT_MOUSE_MOTION:
handleMouseMotionEvent(event.motion);
return true;
case SDL_EVENT_WINDOW_RESIZED:
case SDL_EVENT_WINDOW_CLOSE_REQUESTED:
case SDL_EVENT_WINDOW_MINIMIZED:
case SDL_EVENT_WINDOW_RESTORED:
handleWindowEvent(event.window);
return true;
case SDL_EVENT_QUIT:
handleQuitEvent();
return true;
default:
return false;
}
}
void InputManager::update(double deltaTime) {
update(static_cast<float>(deltaTime));
}
bool InputManager::isKeyCurrentlyPressed(SDL_Scancode scancode) const {
return isKeyHeld(scancode);
}
bool InputManager::isKeyJustPressed(SDL_Scancode scancode) const {
return isKeyPressed(scancode);
}
bool InputManager::isKeyJustReleased(SDL_Scancode scancode) const {
return isKeyReleased(scancode);
}
bool InputManager::isQuitRequested() const {
return shouldQuit();
}
void InputManager::reset() {
// Clear pressed/released states, keep held states
// In the current InputManager implementation, we use previous/current state
// so we just copy current to previous to reset the "just pressed/released" states
m_previousKeyState = m_currentKeyState;
m_previousMouseState = m_currentMouseState;
}
void InputManager::handleQuitEvent() {
m_shouldQuit = true;
for (auto& handler : m_quitHandlers) {
handler();
}
}

View File

@ -4,6 +4,7 @@
#include <unordered_map>
#include <functional>
#include <vector>
#include "../interfaces/IInputHandler.h"
/**
* InputManager - Centralized input handling system
@ -15,7 +16,7 @@
* - Support event handler registration
* - Implement game-specific input logic (DAS/ARR)
*/
class InputManager {
class InputManager : public IInputHandler {
public:
// Event handler types
using KeyHandler = std::function<void(SDL_Scancode key, bool pressed)>;
@ -27,7 +28,16 @@ public:
InputManager();
~InputManager() = default;
// Core input processing
// IInputHandler interface implementation
bool processEvent(const SDL_Event& event) override;
void update(double deltaTime) override;
bool isKeyCurrentlyPressed(SDL_Scancode scancode) const override;
bool isKeyJustPressed(SDL_Scancode scancode) const override;
bool isKeyJustReleased(SDL_Scancode scancode) const override;
bool isQuitRequested() const override;
void reset() override;
// Existing InputManager methods
void processEvents();
void update(float deltaTime);
@ -98,6 +108,7 @@ private:
void handleMouseButtonEvent(const SDL_MouseButtonEvent& event);
void handleMouseMotionEvent(const SDL_MouseMotionEvent& event);
void handleWindowEvent(const SDL_WindowEvent& event);
void handleQuitEvent();
void updateInputState();
void updateDAS(float deltaTime);
void resetDAS();

View File

@ -0,0 +1,64 @@
#pragma once
#include <SDL3/SDL.h>
#include <string>
/**
* @brief Abstract interface for asset loading operations
*
* Provides a common interface for loading different types of assets,
* enabling dependency injection and easier testing.
*/
class IAssetLoader {
public:
virtual ~IAssetLoader() = default;
/**
* @brief Load a texture from file (interface method)
* @param path Path to the texture file
* @return Pointer to loaded SDL_Texture, nullptr on failure
*/
virtual SDL_Texture* loadTextureFromPath(const std::string& path) = 0;
/**
* @brief Load a font from file (interface method)
* @param name Font identifier/name
* @param path Path to the font file
* @param size Font size in pixels
* @return true if font was loaded successfully, false otherwise
*/
virtual bool loadFontAsset(const std::string& name, const std::string& path, int size) = 0;
/**
* @brief Load an audio file (interface method)
* @param name Audio identifier/name
* @param path Path to the audio file
* @return true if audio was loaded successfully, false otherwise
*/
virtual bool loadAudioAsset(const std::string& name, const std::string& path) = 0;
/**
* @brief Get a previously loaded texture (interface method)
* @param name Texture identifier/name
* @return Pointer to SDL_Texture, nullptr if not found
*/
virtual SDL_Texture* getTextureAsset(const std::string& name) = 0;
/**
* @brief Check if an asset exists
* @param name Asset identifier/name
* @return true if asset exists, false otherwise
*/
virtual bool hasAsset(const std::string& name) const = 0;
/**
* @brief Unload a specific asset
* @param name Asset identifier/name
*/
virtual void unloadAsset(const std::string& name) = 0;
/**
* @brief Unload all assets
*/
virtual void unloadAll() = 0;
};

View File

@ -0,0 +1,55 @@
#pragma once
#include <string>
/**
* @brief Abstract interface for audio system operations
*
* Provides a common interface for audio playback, enabling
* dependency injection and easier testing.
*/
class IAudioSystem {
public:
virtual ~IAudioSystem() = default;
/**
* @brief Play a sound effect
* @param name Sound effect name/identifier
*/
virtual void playSound(const std::string& name) = 0;
/**
* @brief Play background music
* @param name Music track name/identifier
*/
virtual void playMusic(const std::string& name) = 0;
/**
* @brief Stop currently playing music
*/
virtual void stopMusic() = 0;
/**
* @brief Set master volume for all audio
* @param volume Volume level (0.0 to 1.0)
*/
virtual void setMasterVolume(float volume) = 0;
/**
* @brief Set music volume
* @param volume Volume level (0.0 to 1.0)
*/
virtual void setMusicVolume(float volume) = 0;
/**
* @brief Set sound effects volume
* @param volume Volume level (0.0 to 1.0)
*/
virtual void setSoundVolume(float volume) = 0;
/**
* @brief Check if music is currently playing
* @return true if music is playing, false otherwise
*/
virtual bool isMusicPlaying() const = 0;
};

View File

@ -0,0 +1,73 @@
#pragma once
/**
* @brief Abstract interface for game rules
*
* Provides a common interface for different Tetris rule implementations,
* enabling different game modes and rule variations.
*/
class IGameRules {
public:
virtual ~IGameRules() = default;
/**
* @brief Calculate score for cleared lines
* @param linesCleared Number of lines cleared simultaneously
* @param level Current game level
* @return Score points to award
*/
virtual int calculateScore(int linesCleared, int level) const = 0;
/**
* @brief Get gravity speed for a given level
* @param level Game level
* @return Time in milliseconds for one gravity drop
*/
virtual double getGravitySpeed(int level) const = 0;
/**
* @brief Check if level should increase
* @param totalLines Total lines cleared so far
* @param currentLevel Current game level
* @return true if level should increase, false otherwise
*/
virtual bool shouldLevelUp(int totalLines, int currentLevel) const = 0;
/**
* @brief Calculate next level based on lines cleared
* @param totalLines Total lines cleared so far
* @param startLevel Starting level
* @return New level
*/
virtual int calculateLevel(int totalLines, int startLevel) const = 0;
/**
* @brief Get soft drop speed multiplier
* @return Multiplier for gravity when soft dropping
*/
virtual double getSoftDropMultiplier() const = 0;
/**
* @brief Get hard drop score per cell
* @return Points awarded per cell for hard drop
*/
virtual int getHardDropScore() const = 0;
/**
* @brief Get soft drop score per cell
* @return Points awarded per cell for soft drop
*/
virtual int getSoftDropScore() const = 0;
/**
* @brief Check if T-spins are enabled in this rule set
* @return true if T-spins are supported, false otherwise
*/
virtual bool supportsTSpins() const = 0;
/**
* @brief Check if hold feature is enabled in this rule set
* @return true if hold is supported, false otherwise
*/
virtual bool supportsHold() const = 0;
};

View File

@ -0,0 +1,59 @@
#pragma once
#include <SDL3/SDL.h>
/**
* @brief Abstract interface for input handling operations
*
* Provides a common interface for input processing,
* enabling dependency injection and easier testing.
*/
class IInputHandler {
public:
virtual ~IInputHandler() = default;
/**
* @brief Process SDL events
* @param event SDL event to process
* @return true if event was handled, false otherwise
*/
virtual bool processEvent(const SDL_Event& event) = 0;
/**
* @brief Update input state (called per frame)
* @param deltaTime Time elapsed since last frame in milliseconds
*/
virtual void update(double deltaTime) = 0;
/**
* @brief Check if a key is currently pressed (interface method)
* @param scancode SDL scancode of the key
* @return true if key is pressed, false otherwise
*/
virtual bool isKeyCurrentlyPressed(SDL_Scancode scancode) const = 0;
/**
* @brief Check if a key was just pressed this frame
* @param scancode SDL scancode of the key
* @return true if key was just pressed, false otherwise
*/
virtual bool isKeyJustPressed(SDL_Scancode scancode) const = 0;
/**
* @brief Check if a key was just released this frame
* @param scancode SDL scancode of the key
* @return true if key was just released, false otherwise
*/
virtual bool isKeyJustReleased(SDL_Scancode scancode) const = 0;
/**
* @brief Check if quit was requested (e.g., Alt+F4, window close)
* @return true if quit was requested, false otherwise
*/
virtual bool isQuitRequested() const = 0;
/**
* @brief Reset input state (typically called at frame start)
*/
virtual void reset() = 0;
};

View File

@ -0,0 +1,56 @@
#pragma once
#include <SDL3/SDL.h>
#include <cstdint>
/**
* @brief Abstract interface for rendering operations
*
* Provides a common interface for different rendering implementations,
* enabling dependency injection and easier testing.
*/
class IRenderer {
public:
virtual ~IRenderer() = default;
/**
* @brief Clear the render target with specified color (interface method)
* @param r Red component (0-255)
* @param g Green component (0-255)
* @param b Blue component (0-255)
* @param a Alpha component (0-255)
*/
virtual void clearScreen(uint8_t r, uint8_t g, uint8_t b, uint8_t a) = 0;
/**
* @brief Present the rendered frame to the display
*/
virtual void present() = 0;
/**
* @brief Get the underlying SDL renderer for direct operations
* @return Pointer to SDL_Renderer
* @note This is provided for compatibility with existing code
*/
virtual SDL_Renderer* getSDLRenderer() = 0;
/**
* @brief Get the current window size (interface method)
* @param width Output parameter for window width
* @param height Output parameter for window height
*/
virtual void getWindowDimensions(int& width, int& height) const = 0;
/**
* @brief Set the render viewport
* @param viewport Viewport rectangle
*/
virtual void setViewport(const SDL_Rect* viewport) = 0;
/**
* @brief Set the render scale
* @param scaleX Horizontal scale factor
* @param scaleY Vertical scale factor
*/
virtual void setScale(float scaleX, float scaleY) = 0;
};

View File

@ -1,5 +1,5 @@
#include "StateManager.h"
#include "../graphics/RenderManager.h"
#include "../../graphics/renderers/RenderManager.h"
#include <SDL3/SDL.h>
StateManager::StateManager(AppState initial)

View File

@ -1,5 +1,5 @@
// Game.cpp - Implementation of core Tetris game logic
#include "gameplay/Game.h"
#include "Game.h"
#include <algorithm>
#include <cmath>
#include <SDL3/SDL.h>
@ -153,17 +153,18 @@ void Game::lockPiece() {
// JS level progression (NES-like) using starting level rules
// Both startLevel and _level are 0-based now.
const int threshold = (startLevel + 1) * 10; // first promotion after this many lines
int oldLevel = _level;
// First level up happens when total lines equal threshold
// After that, every 10 lines (when (lines - threshold) % 10 == 0)
if (_lines == threshold) {
_level += 1;
} else if (_lines > threshold && ((_lines - threshold) % 10 == 0)) {
_level += 1;
int targetLevel = startLevel;
int firstThreshold = (startLevel + 1) * 10;
if (_lines >= firstThreshold) {
targetLevel = startLevel + 1 + (_lines - firstThreshold) / 10;
}
if (_level > oldLevel) {
// If we haven't reached the first threshold yet, we are still at startLevel.
// The above logic handles this (targetLevel initialized to startLevel).
if (targetLevel > _level) {
_level = targetLevel;
// Update gravity to exact NES speed for the new level
gravityMs = gravityMsForLevel(_level, gravityGlobalMultiplier);
if (levelUpCallback) levelUpCallback(_level);
@ -288,14 +289,53 @@ void Game::rotate(int dir) {
return;
}
// JavaScript-style wall kicks: try horizontal, up, then larger horizontal offsets
const std::pair<int,int> kicks[] = {
{1, 0}, // right
{-1, 0}, // left
{0, -1}, // up (key difference from our previous approach)
{2, 0}, // 2 right (for I piece)
{-2, 0}, // 2 left (for I piece)
// Standard SRS Wall Kicks
// See: https://tetris.wiki/Super_Rotation_System#Wall_kicks
// JLSTZ Wall Kicks (0->R, R->2, 2->L, L->0)
// We only implement the clockwise (0->1, 1->2, 2->3, 3->0) and counter-clockwise (0->3, 3->2, 2->1, 1->0)
// For simplicity in this codebase, we'll use a unified set of tests that covers most cases
// or we can implement the full table.
// Let's use a robust set of kicks that covers most standard situations
std::vector<std::pair<int,int>> kicks;
if (p.type == I) {
// I-piece kicks
kicks = {
{0, 0}, // Basic rotation
{-2, 0}, {1, 0}, {-2, -1}, {1, 2}, // 0->1 (R)
{2, 0}, {-1, 0}, {2, 1}, {-1, -2}, // 1->0 (L)
{-1, 0}, {2, 0}, {-1, 2}, {2, -1}, // 1->2 (R)
{1, 0}, {-2, 0}, {1, -2}, {-2, 1}, // 2->1 (L)
{2, 0}, {-1, 0}, {2, 1}, {-1, -2}, // 2->3 (R)
{-2, 0}, {1, 0}, {-2, -1}, {1, 2}, // 3->2 (L)
{1, 0}, {-2, 0}, {1, -2}, {-2, 1}, // 3->0 (R)
{-1, 0}, {2, 0}, {-1, 2}, {2, -1} // 0->3 (L)
};
// The above is a superset; for a specific rotation state transition we should pick the right row.
// However, since we don't track "last rotation state" easily here (we just have p.rot),
// we'll try a generally permissive set of kicks that works for I-piece.
// A simplified "try everything" approach for I-piece:
kicks = {
{0, 0},
{-2, 0}, { 2, 0},
{-1, 0}, { 1, 0},
{ 0,-1}, { 0, 1}, // Up/Down
{-2,-1}, { 2,-1}, // Diagonal up
{ 1, 2}, {-1, 2}, // Diagonal down
{-2, 1}, { 2, 1}
};
} else {
// JLSTZ kicks
kicks = {
{0, 0},
{-1, 0}, { 1, 0}, // Left/Right
{ 0,-1}, // Up (floor kick)
{-1,-1}, { 1,-1}, // Diagonal up
{ 0, 1} // Down (rare but possible)
};
}
for (auto kick : kicks) {
Piece test = p;

View File

@ -7,7 +7,7 @@
#include <cstdint>
#include <functional>
#include <memory>
#include "core/GravityManager.h"
#include "../../core/GravityManager.h"
enum PieceType { I, O, T, S, Z, J, L, PIECE_COUNT };
using Shape = std::array<uint16_t, 4>; // four rotation bitmasks

View File

@ -0,0 +1,280 @@
// LineEffect.cpp - Implementation of line clearing visual and audio effects
#include "LineEffect.h"
#include <algorithm>
#include <cmath>
#include "audio/Audio.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
LineEffect::Particle::Particle(float px, float py)
: x(px), y(py), size(6.0f + static_cast<float>(rand()) / RAND_MAX * 12.0f), alpha(1.0f) {
// Random velocity for explosive effect
float angle = static_cast<float>(rand()) / RAND_MAX * 2.0f * M_PI;
float speed = 80.0f + static_cast<float>(rand()) / RAND_MAX * 150.0f;
vx = std::cos(angle) * speed;
vy = std::sin(angle) * speed - 30.0f;
// Random block type for texture
blockType = rand() % 7;
// Fallback colors if texture not available
switch (blockType % 4) {
case 0: color = {255, 140, 30, 255}; break;
case 1: color = {255, 255, 100, 255}; break;
case 2: color = {255, 255, 255, 255}; break;
case 3: color = {255, 100, 100, 255}; break;
}
}
void LineEffect::Particle::update() {
x += vx * 0.016f;
y += vy * 0.016f;
vy += 250.0f * 0.016f;
vx *= 0.98f;
alpha -= 0.08f; // Slower fade for blocks
if (alpha < 0.0f) alpha = 0.0f;
if (size > 2.0f) size -= 0.05f;
}
void LineEffect::Particle::render(SDL_Renderer* renderer, SDL_Texture* blocksTex) {
if (alpha <= 0.0f) return;
if (blocksTex) {
// Render textured block fragment
Uint8 prevA = 255;
SDL_GetTextureAlphaMod(blocksTex, &prevA);
SDL_SetTextureAlphaMod(blocksTex, static_cast<Uint8>(alpha * 255.0f));
const int SPRITE_SIZE = 90;
float srcX = blockType * SPRITE_SIZE + 2;
float srcY = 2;
float srcW = SPRITE_SIZE - 4;
float srcH = SPRITE_SIZE - 4;
SDL_FRect srcRect = {srcX, srcY, srcW, srcH};
SDL_FRect dstRect = {x - size/2, y - size/2, size, size};
SDL_RenderTexture(renderer, blocksTex, &srcRect, &dstRect);
SDL_SetTextureAlphaMod(blocksTex, prevA);
} else {
// Fallback to circle rendering
SDL_SetRenderDrawBlendMode(renderer, SDL_BLENDMODE_BLEND);
Uint8 adjustedAlpha = static_cast<Uint8>(alpha * 255.0f);
SDL_SetRenderDrawColor(renderer, color.r, color.g, color.b, adjustedAlpha);
for (int i = 0; i < static_cast<int>(size); ++i) {
for (int j = 0; j < static_cast<int>(size); ++j) {
float dx = i - size/2.0f;
float dy = j - size/2.0f;
if (dx*dx + dy*dy <= (size/2.0f)*(size/2.0f)) {
SDL_RenderPoint(renderer, x + dx, y + dy);
}
}
}
}
}
LineEffect::LineEffect() : renderer(nullptr), state(AnimationState::IDLE), timer(0.0f),
rng(std::random_device{}()), audioStream(nullptr) {
}
LineEffect::~LineEffect() {
shutdown();
}
bool LineEffect::init(SDL_Renderer* r) {
renderer = r;
initAudio();
return true;
}
void LineEffect::shutdown() {
// No separate audio stream anymore; SFX go through shared Audio mixer
}
void LineEffect::initAudio() {
// Generate simple beep sounds procedurally (fallback when voice SFX not provided)
// Generate a simple line clear beep (440Hz for 0.2 seconds)
int sampleRate = 44100;
int duration = static_cast<int>(0.2f * sampleRate);
lineClearSample.resize(duration * 2); // Stereo
for (int i = 0; i < duration; ++i) {
float t = static_cast<float>(i) / sampleRate;
float wave = std::sin(2.0f * M_PI * 440.0f * t) * 0.3f; // 440Hz sine wave
int16_t sample = static_cast<int16_t>(wave * 32767.0f);
lineClearSample[i * 2] = sample; // Left channel
lineClearSample[i * 2 + 1] = sample; // Right channel
}
// Generate a higher pitched tetris sound (880Hz for 0.4 seconds)
duration = static_cast<int>(0.4f * sampleRate);
tetrisSample.resize(duration * 2);
for (int i = 0; i < duration; ++i) {
float t = static_cast<float>(i) / sampleRate;
float wave = std::sin(2.0f * M_PI * 880.0f * t) * 0.4f; // 880Hz sine wave
int16_t sample = static_cast<int16_t>(wave * 32767.0f);
tetrisSample[i * 2] = sample; // Left channel
tetrisSample[i * 2 + 1] = sample; // Right channel
}
}
void LineEffect::startLineClear(const std::vector<int>& rows, int gridX, int gridY, int blockSize) {
if (rows.empty()) return;
clearingRows = rows;
state = AnimationState::FLASH_WHITE;
timer = 0.0f;
particles.clear();
// Create particles for each clearing row
for (int row : rows) {
createParticles(row, gridX, gridY, blockSize);
}
// Play appropriate sound
playLineClearSound(static_cast<int>(rows.size()));
}
void LineEffect::createParticles(int row, int gridX, int gridY, int blockSize) {
// Create particles spread across the row with explosive pattern
int particlesPerRow = 35; // More particles for dramatic explosion effect
for (int i = 0; i < particlesPerRow; ++i) {
// Create particles along the entire row width
float x = gridX + (static_cast<float>(i) / (particlesPerRow - 1)) * (10 * blockSize);
float y = gridY + row * blockSize + blockSize / 2.0f;
// Add some randomness to position
x += (static_cast<float>(rand()) / RAND_MAX - 0.5f) * blockSize * 0.8f;
y += (static_cast<float>(rand()) / RAND_MAX - 0.5f) * blockSize * 0.6f;
particles.emplace_back(x, y);
}
}
bool LineEffect::update(float deltaTime) {
if (state == AnimationState::IDLE) return true;
timer += deltaTime;
switch (state) {
case AnimationState::FLASH_WHITE:
if (timer >= FLASH_DURATION) {
state = AnimationState::EXPLODE_BLOCKS;
timer = 0.0f;
}
break;
case AnimationState::EXPLODE_BLOCKS:
updateParticles();
if (timer >= EXPLODE_DURATION) {
state = AnimationState::BLOCKS_DROP;
timer = 0.0f;
}
break;
case AnimationState::BLOCKS_DROP:
updateParticles();
if (timer >= DROP_DURATION) {
state = AnimationState::IDLE;
clearingRows.clear();
particles.clear();
return true; // Effect complete
}
break;
case AnimationState::IDLE:
return true;
}
return false; // Effect still running
}
void LineEffect::updateParticles() {
// Update all particles
for (auto& particle : particles) {
particle.update();
}
// Remove dead particles
particles.erase(
std::remove_if(particles.begin(), particles.end(),
[](const Particle& p) { return !p.isAlive(); }),
particles.end()
);
}
void LineEffect::render(SDL_Renderer* renderer, SDL_Texture* blocksTex, int gridX, int gridY, int blockSize) {
if (state == AnimationState::IDLE) return;
switch (state) {
case AnimationState::FLASH_WHITE:
renderFlash(gridX, gridY, blockSize);
break;
case AnimationState::EXPLODE_BLOCKS:
renderExplosion(blocksTex);
break;
case AnimationState::BLOCKS_DROP:
renderExplosion(blocksTex);
break;
case AnimationState::IDLE:
break;
}
}
void LineEffect::renderFlash(int gridX, int gridY, int blockSize) {
// Create a flashing white effect with varying opacity
float progress = timer / FLASH_DURATION;
float flashIntensity = std::sin(progress * M_PI * 6.0f) * 0.5f + 0.5f;
SDL_SetRenderDrawBlendMode(renderer, SDL_BLENDMODE_BLEND);
Uint8 alpha = static_cast<Uint8>(flashIntensity * 180.0f);
for (int row : clearingRows) {
SDL_SetRenderDrawColor(renderer, 255, 255, 255, alpha);
SDL_FRect flashRect = {
static_cast<float>(gridX - 4),
static_cast<float>(gridY + row * blockSize - 4),
static_cast<float>(10 * blockSize + 8),
static_cast<float>(blockSize + 8)
};
SDL_RenderFillRect(renderer, &flashRect);
SDL_SetRenderDrawColor(renderer, 100, 150, 255, alpha / 2);
for (int i = 1; i <= 3; ++i) {
SDL_FRect glowRect = {
flashRect.x - i,
flashRect.y - i,
flashRect.w + 2*i,
flashRect.h + 2*i
};
SDL_RenderRect(renderer, &glowRect);
}
}
}
void LineEffect::renderExplosion(SDL_Texture* blocksTex) {
for (auto& particle : particles) {
particle.render(renderer, blocksTex);
}
}
void LineEffect::playLineClearSound(int lineCount) {
// Choose appropriate sound based on line count
const std::vector<int16_t>* sample = (lineCount == 4) ? &tetrisSample : &lineClearSample;
if (sample && !sample->empty()) {
// Mix via shared Audio device so it layers with music
Audio::instance().playSfx(*sample, 2, 44100, (lineCount == 4) ? 0.9f : 0.7f);
}
}

View File

@ -0,0 +1,72 @@
// LineEffect.h - Line clearing visual and audio effects
#pragma once
#include <SDL3/SDL.h>
#include <vector>
#include <random>
class LineEffect {
public:
struct Particle {
float x, y;
float vx, vy;
float size;
float alpha;
int blockType; // Added for textured particles
SDL_Color color;
Particle(float px, float py);
void update();
void render(SDL_Renderer* renderer, SDL_Texture* blocksTex);
bool isAlive() const { return alpha > 0.0f; }
};
enum class AnimationState {
IDLE,
FLASH_WHITE,
EXPLODE_BLOCKS,
BLOCKS_DROP
};
LineEffect();
~LineEffect();
bool init(SDL_Renderer* renderer);
void shutdown();
// Start line clear effect for the specified rows
void startLineClear(const std::vector<int>& rows, int gridX, int gridY, int blockSize);
// Update and render the effect
bool update(float deltaTime); // Returns true if effect is complete
void render(SDL_Renderer* renderer, SDL_Texture* blocksTex, int gridX, int gridY, int blockSize);
// Audio
void playLineClearSound(int lineCount);
bool isActive() const { return state != AnimationState::IDLE; }
private:
SDL_Renderer* renderer{nullptr};
AnimationState state{AnimationState::IDLE};
float timer{0.0f};
std::vector<int> clearingRows;
std::vector<Particle> particles;
std::mt19937 rng{std::random_device{}()};
// Audio resources
SDL_AudioStream* audioStream{nullptr};
std::vector<int16_t> lineClearSample;
std::vector<int16_t> tetrisSample;
// Animation timing - Flash then immediate explosion effect
static constexpr float FLASH_DURATION = 0.12f; // Very brief white flash
static constexpr float EXPLODE_DURATION = 0.15f; // Quick explosive effect
static constexpr float DROP_DURATION = 0.05f; // Almost instant block drop
void createParticles(int row, int gridX, int gridY, int blockSize);
void updateParticles();
void renderFlash(int gridX, int gridY, int blockSize);
void renderExplosion(SDL_Texture* blocksTex);
bool loadAudioSample(const std::string& path, std::vector<int16_t>& sample);
void initAudio();
};

View File

@ -0,0 +1,41 @@
// Starfield.cpp - implementation (copied into src/graphics)
#include "graphics/Starfield.h"
#include <SDL3/SDL.h>
#include <random>
void Starfield::init(int count, int w, int h)
{
stars.clear();
stars.reserve(count);
std::mt19937 rng{std::random_device{}()};
std::uniform_real_distribution<float> dx(0.f, (float)w), dy(0.f, (float)h), dz(0.2f, 1.f);
for (int i = 0; i < count; ++i)
stars.push_back({dx(rng), dy(rng), dz(rng), 15.f + 35.f * dz(rng)});
lastW = w;
lastH = h;
}
void Starfield::update(float dt, int w, int h)
{
if (w != lastW || h != lastH || stars.empty())
init((w * h) / 8000 + 120, w, h);
for (auto &s : stars)
{
s.y += s.speed * dt;
if (s.y > h)
{
s.y -= h;
s.x = (float)(rand() % w);
}
}
}
void Starfield::draw(SDL_Renderer *r) const
{
SDL_SetRenderDrawColor(r, 255, 255, 255, 255);
for (auto &s : stars)
{
SDL_FRect fr{s.x, s.y, 1.f * s.z, 1.f * s.z};
SDL_RenderFillRect(r, &fr);
}
}

View File

@ -0,0 +1,15 @@
// Starfield.h - Procedural starfield background effect
#pragma once
#include <vector>
struct SDL_Renderer; // fwd
class Starfield {
public:
void init(int count, int w, int h);
void update(float dt, int w, int h);
void draw(SDL_Renderer* r) const;
private:
struct Star { float x,y,z,speed; };
std::vector<Star> stars;
int lastW{0}, lastH{0};
};

View File

@ -0,0 +1,164 @@
// Starfield3D.cpp - 3D Parallax Starfield Implementation
#include "Starfield3D.h"
#include <cmath>
#include <algorithm>
Starfield3D::Starfield3D() : rng(std::random_device{}()), width(800), height(600), centerX(400), centerY(300) {
}
void Starfield3D::init(int w, int h, int starCount) {
width = w;
height = h;
centerX = width * 0.5f;
centerY = height * 0.5f;
stars.resize(starCount);
createStarfield();
}
void Starfield3D::resize(int w, int h) {
width = w;
height = h;
centerX = width * 0.5f;
centerY = height * 0.5f;
}
float Starfield3D::randomFloat(float min, float max) {
std::uniform_real_distribution<float> dist(min, max);
return dist(rng);
}
int Starfield3D::randomRange(int min, int max) {
std::uniform_int_distribution<int> dist(min, max - 1);
return dist(rng);
}
void Starfield3D::setRandomDirection(Star3D& star) {
star.targetVx = randomFloat(-MAX_VELOCITY, MAX_VELOCITY);
star.targetVy = randomFloat(-MAX_VELOCITY, MAX_VELOCITY);
// Allow stars to move both toward and away from viewer
if (randomFloat(0.0f, 1.0f) < REVERSE_PROBABILITY) {
// Move away from viewer (positive Z)
star.targetVz = STAR_SPEED * randomFloat(0.5f, 1.0f);
} else {
// Move toward viewer (negative Z)
star.targetVz = -STAR_SPEED * randomFloat(0.7f, 1.3f);
}
star.changing = true;
star.changeTimer = randomFloat(30.0f, 120.0f); // Direction change lasts 30-120 frames
}
void Starfield3D::updateStar(int index) {
Star3D& star = stars[index];
star.x = randomFloat(-25.0f, 25.0f);
star.y = randomFloat(-25.0f, 25.0f);
star.z = randomFloat(1.0f, MAX_DEPTH);
// Give stars initial velocities in all possible directions
if (randomFloat(0.0f, 1.0f) < 0.5f) {
// Half stars start moving toward viewer
star.vx = randomFloat(-0.1f, 0.1f);
star.vy = randomFloat(-0.1f, 0.1f);
star.vz = -STAR_SPEED * randomFloat(0.8f, 1.2f);
} else {
// Half stars start moving in random directions
star.vx = randomFloat(-0.2f, 0.2f);
star.vy = randomFloat(-0.2f, 0.2f);
// 30% chance to start moving away
if (randomFloat(0.0f, 1.0f) < 0.3f) {
star.vz = STAR_SPEED * randomFloat(0.5f, 0.8f);
} else {
star.vz = -STAR_SPEED * randomFloat(0.8f, 1.2f);
}
}
star.targetVx = star.vx;
star.targetVy = star.vy;
star.targetVz = star.vz;
star.changing = false;
star.changeTimer = 0.0f;
star.type = randomRange(0, COLOR_COUNT);
// Give some stars initial direction variations
if (randomFloat(0.0f, 1.0f) < 0.4f) {
setRandomDirection(star);
}
}
void Starfield3D::createStarfield() {
for (size_t i = 0; i < stars.size(); ++i) {
updateStar(static_cast<int>(i));
}
}
void Starfield3D::update(float deltaTime) {
const float frameRate = 60.0f; // Target 60 FPS for consistency
const float frameMultiplier = deltaTime * frameRate;
for (size_t i = 0; i < stars.size(); ++i) {
Star3D& star = stars[i];
// Randomly change direction occasionally
if (!star.changing && randomFloat(0.0f, 1.0f) < DIRECTION_CHANGE_PROBABILITY * frameMultiplier) {
setRandomDirection(star);
}
// Update velocities to approach target values
if (star.changing) {
// Smoothly transition to target velocities
const float change = VELOCITY_CHANGE * frameMultiplier;
star.vx += (star.targetVx - star.vx) * change;
star.vy += (star.targetVy - star.vy) * change;
star.vz += (star.targetVz - star.vz) * change;
// Decrement change timer
star.changeTimer -= frameMultiplier;
if (star.changeTimer <= 0.0f) {
star.changing = false;
}
}
// Update position using current velocity
star.x += star.vx * frameMultiplier;
star.y += star.vy * frameMultiplier;
star.z += star.vz * frameMultiplier;
// Handle boundaries - reset star if it moves out of bounds, too close, or too far
if (star.z <= MIN_Z ||
star.z >= MAX_Z ||
std::abs(star.x) > 50.0f ||
std::abs(star.y) > 50.0f) {
updateStar(static_cast<int>(i));
}
}
}
void Starfield3D::drawStar(SDL_Renderer* renderer, float x, float y, int type) {
const SDL_Color& color = STAR_COLORS[type % COLOR_COUNT];
SDL_SetRenderDrawColor(renderer, color.r, color.g, color.b, color.a);
// Draw star as a small rectangle (1x1 pixel)
SDL_FRect rect{x, y, 1.0f, 1.0f};
SDL_RenderFillRect(renderer, &rect);
}
void Starfield3D::draw(SDL_Renderer* renderer) {
for (const Star3D& star : stars) {
// Calculate perspective projection factor
const float k = DEPTH_FACTOR / star.z;
// Calculate screen position with perspective
const float px = star.x * k + centerX;
const float py = star.y * k + centerY;
// Only draw stars that are within the viewport
if (px >= 0.0f && px <= static_cast<float>(width) &&
py >= 0.0f && py <= static_cast<float>(height)) {
drawStar(renderer, px, py, star.type);
}
}
}

View File

@ -0,0 +1,63 @@
// Starfield3D.h - 3D Parallax Starfield Effect (canonical)
#pragma once
#include <SDL3/SDL.h>
#include <vector>
#include <random>
#include <array>
class Starfield3D {
public:
Starfield3D();
~Starfield3D() = default;
void init(int width, int height, int starCount = 160);
void update(float deltaTime);
void draw(SDL_Renderer* renderer);
void resize(int width, int height);
private:
struct Star3D {
float x, y, z;
float vx, vy, vz;
float targetVx, targetVy, targetVz;
float changeTimer;
bool changing;
int type;
};
// Helpers used by the implementation
void createStarfield();
void updateStar(int index);
void setRandomDirection(Star3D& star);
float randomFloat(float min, float max);
int randomRange(int min, int max);
void drawStar(SDL_Renderer* renderer, float x, float y, int type);
std::vector<Star3D> stars;
int width{0}, height{0};
float centerX{0}, centerY{0};
// Random number generator
std::mt19937 rng;
// Visual / behavioral constants (tweakable)
inline static constexpr float MAX_VELOCITY = 0.5f;
inline static constexpr float REVERSE_PROBABILITY = 0.12f;
inline static constexpr float STAR_SPEED = 0.6f;
inline static constexpr float MAX_DEPTH = 120.0f;
inline static constexpr float DIRECTION_CHANGE_PROBABILITY = 0.002f;
inline static constexpr float VELOCITY_CHANGE = 0.02f;
inline static constexpr float MIN_Z = 0.1f;
inline static constexpr float MAX_Z = MAX_DEPTH;
inline static constexpr float DEPTH_FACTOR = 320.0f;
inline static constexpr int COLOR_COUNT = 5;
inline static const std::array<SDL_Color, COLOR_COUNT> STAR_COLORS = {
SDL_Color{255,255,255,255},
SDL_Color{200,200,255,255},
SDL_Color{255,220,180,255},
SDL_Color{180,220,255,255},
SDL_Color{255,180,200,255}
};
};

View File

@ -0,0 +1,480 @@
#include "GameRenderer.h"
#include "../../gameplay/core/Game.h"
#include "../ui/Font.h"
#include "../../gameplay/effects/LineEffect.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
// Color constants (copied from main.cpp)
static const SDL_Color COLORS[] = {
{0, 0, 0, 255}, // 0: BLACK (empty)
{0, 255, 255, 255}, // 1: I-piece - cyan
{255, 255, 0, 255}, // 2: O-piece - yellow
{128, 0, 128, 255}, // 3: T-piece - purple
{0, 255, 0, 255}, // 4: S-piece - green
{255, 0, 0, 255}, // 5: Z-piece - red
{0, 0, 255, 255}, // 6: J-piece - blue
{255, 165, 0, 255} // 7: L-piece - orange
};
void GameRenderer::drawRect(SDL_Renderer* renderer, float x, float y, float w, float h, SDL_Color c) {
SDL_SetRenderDrawColor(renderer, c.r, c.g, c.b, c.a);
SDL_FRect fr{x, y, w, h};
SDL_RenderFillRect(renderer, &fr);
}
void GameRenderer::drawBlockTexture(SDL_Renderer* renderer, SDL_Texture* blocksTex, float x, float y, float size, int blockType) {
if (!blocksTex || blockType < 0 || blockType >= PIECE_COUNT) {
// Fallback to colored rectangle if texture isn't available
SDL_Color color = (blockType >= 0 && blockType < PIECE_COUNT) ? COLORS[blockType + 1] : SDL_Color{128, 128, 128, 255};
drawRect(renderer, x, y, size-1, size-1, color);
return;
}
// JavaScript uses: sx = type * spriteSize, sy = 0, with 2px padding
// Each sprite is 90px wide in the horizontal sprite sheet
const int SPRITE_SIZE = 90;
float srcX = blockType * SPRITE_SIZE + 2; // Add 2px padding like JS
float srcY = 2; // Add 2px padding from top like JS
float srcW = SPRITE_SIZE - 4; // Subtract 4px total padding like JS
float srcH = SPRITE_SIZE - 4; // Subtract 4px total padding like JS
SDL_FRect srcRect = {srcX, srcY, srcW, srcH};
SDL_FRect dstRect = {x, y, size, size};
SDL_RenderTexture(renderer, blocksTex, &srcRect, &dstRect);
}
void GameRenderer::drawPiece(SDL_Renderer* renderer, SDL_Texture* blocksTex, const Game::Piece& piece, float ox, float oy, float tileSize, bool isGhost) {
if (piece.type >= PIECE_COUNT) return;
for (int cy = 0; cy < 4; ++cy) {
for (int cx = 0; cx < 4; ++cx) {
if (Game::cellFilled(piece, cx, cy)) {
float px = ox + (piece.x + cx) * tileSize;
float py = oy + (piece.y + cy) * tileSize;
if (isGhost) {
SDL_SetRenderDrawBlendMode(renderer, SDL_BLENDMODE_BLEND);
// Draw ghost piece as barely visible gray outline
SDL_SetRenderDrawColor(renderer, 180, 180, 180, 20); // Very faint gray
SDL_FRect rect = {px + 2, py + 2, tileSize - 4, tileSize - 4};
SDL_RenderFillRect(renderer, &rect);
// Draw thin gray border
SDL_SetRenderDrawColor(renderer, 180, 180, 180, 30);
SDL_FRect border = {px + 1, py + 1, tileSize - 2, tileSize - 2};
SDL_RenderRect(renderer, &border);
} else {
drawBlockTexture(renderer, blocksTex, px, py, tileSize, piece.type);
}
}
}
}
}
void GameRenderer::drawSmallPiece(SDL_Renderer* renderer, SDL_Texture* blocksTex, PieceType pieceType, float x, float y, float tileSize) {
if (pieceType >= PIECE_COUNT) return;
// Use the first rotation (index 0) for preview
Game::Piece previewPiece;
previewPiece.type = pieceType;
previewPiece.rot = 0;
previewPiece.x = 0;
previewPiece.y = 0;
// Center the piece in the preview area
float offsetX = 0, offsetY = 0;
if (pieceType == 0) { offsetX = tileSize * 0.5f; } // I-piece centering (assuming I = 0)
else if (pieceType == 1) { offsetX = tileSize * 0.5f; } // O-piece centering (assuming O = 1)
// Use semi-transparent alpha for preview blocks
Uint8 previewAlpha = 180;
if (blocksTex) {
SDL_SetTextureAlphaMod(blocksTex, previewAlpha);
}
for (int cy = 0; cy < 4; ++cy) {
for (int cx = 0; cx < 4; ++cx) {
if (Game::cellFilled(previewPiece, cx, cy)) {
float px = x + offsetX + cx * tileSize;
float py = y + offsetY + cy * tileSize;
drawBlockTexture(renderer, blocksTex, px, py, tileSize, pieceType);
}
}
}
// Reset alpha
if (blocksTex) {
SDL_SetTextureAlphaMod(blocksTex, 255);
}
}
void GameRenderer::renderPlayingState(
SDL_Renderer* renderer,
Game* game,
FontAtlas* pixelFont,
LineEffect* lineEffect,
SDL_Texture* blocksTex,
float logicalW,
float logicalH,
float logicalScale,
float winW,
float winH,
bool showExitConfirmPopup
) {
if (!game || !pixelFont) return;
// Calculate actual content area (centered within the window)
float contentScale = logicalScale;
float contentW = logicalW * contentScale;
float contentH = logicalH * contentScale;
float contentOffsetX = (winW - contentW) * 0.5f / contentScale;
float contentOffsetY = (winH - contentH) * 0.5f / contentScale;
// Helper lambda for drawing rectangles with content offset
auto drawRectWithOffset = [&](float x, float y, float w, float h, SDL_Color c) {
SDL_SetRenderDrawColor(renderer, c.r, c.g, c.b, c.a);
SDL_FRect fr{x + contentOffsetX, y + contentOffsetY, w, h};
SDL_RenderFillRect(renderer, &fr);
};
// Responsive layout that scales with window size while maintaining margins
const float MIN_MARGIN = 40.0f;
const float TOP_MARGIN = 60.0f;
const float PANEL_WIDTH = 180.0f;
const float PANEL_SPACING = 30.0f;
const float NEXT_PIECE_HEIGHT = 120.0f;
const float BOTTOM_MARGIN = 60.0f;
// Calculate layout dimensions
const float availableWidth = logicalW - (MIN_MARGIN * 2) - (PANEL_WIDTH * 2) - (PANEL_SPACING * 2);
const float availableHeight = logicalH - TOP_MARGIN - BOTTOM_MARGIN - NEXT_PIECE_HEIGHT;
const float maxBlockSizeW = availableWidth / Game::COLS;
const float maxBlockSizeH = availableHeight / Game::ROWS;
const float BLOCK_SIZE = std::min(maxBlockSizeW, maxBlockSizeH);
const float finalBlockSize = std::max(20.0f, std::min(BLOCK_SIZE, 40.0f));
const float GRID_W = Game::COLS * finalBlockSize;
const float GRID_H = Game::ROWS * finalBlockSize;
// Calculate positions
const float totalContentHeight = NEXT_PIECE_HEIGHT + GRID_H;
const float availableVerticalSpace = logicalH - TOP_MARGIN - BOTTOM_MARGIN;
const float verticalCenterOffset = (availableVerticalSpace - totalContentHeight) * 0.5f;
const float contentStartY = TOP_MARGIN + verticalCenterOffset;
const float totalLayoutWidth = PANEL_WIDTH + PANEL_SPACING + GRID_W + PANEL_SPACING + PANEL_WIDTH;
const float layoutStartX = (logicalW - totalLayoutWidth) * 0.5f;
const float statsX = layoutStartX + contentOffsetX;
const float gridX = layoutStartX + PANEL_WIDTH + PANEL_SPACING + contentOffsetX;
const float scoreX = layoutStartX + PANEL_WIDTH + PANEL_SPACING + GRID_W + PANEL_SPACING + contentOffsetX;
const float gridY = contentStartY + NEXT_PIECE_HEIGHT + contentOffsetY;
const float statsY = gridY;
const float statsW = PANEL_WIDTH;
const float statsH = GRID_H;
// Next piece preview position
const float nextW = finalBlockSize * 4 + 20;
const float nextH = finalBlockSize * 2 + 20;
const float nextX = gridX + (GRID_W - nextW) * 0.5f;
const float nextY = contentStartY + contentOffsetY;
// Handle line clearing effects
if (game->hasCompletedLines() && lineEffect && !lineEffect->isActive()) {
auto completedLines = game->getCompletedLines();
lineEffect->startLineClear(completedLines, static_cast<int>(gridX), static_cast<int>(gridY), static_cast<int>(finalBlockSize));
}
// Draw game grid border
drawRectWithOffset(gridX - 3 - contentOffsetX, gridY - 3 - contentOffsetY, GRID_W + 6, GRID_H + 6, {100, 120, 200, 255});
drawRectWithOffset(gridX - 1 - contentOffsetX, gridY - 1 - contentOffsetY, GRID_W + 2, GRID_H + 2, {60, 80, 160, 255});
drawRectWithOffset(gridX - contentOffsetX, gridY - contentOffsetY, GRID_W, GRID_H, {20, 25, 35, 255});
// Draw panel backgrounds
SDL_SetRenderDrawColor(renderer, 10, 15, 25, 160);
SDL_FRect lbg{statsX - 16, gridY - 10, statsW + 32, GRID_H + 20};
SDL_RenderFillRect(renderer, &lbg);
SDL_FRect rbg{scoreX - 16, gridY - 16, statsW + 32, GRID_H + 32};
SDL_RenderFillRect(renderer, &rbg);
// Draw grid lines
SDL_SetRenderDrawColor(renderer, 40, 45, 60, 255);
for (int x = 1; x < Game::COLS; ++x) {
float lineX = gridX + x * finalBlockSize;
SDL_RenderLine(renderer, lineX, gridY, lineX, gridY + GRID_H);
}
for (int y = 1; y < Game::ROWS; ++y) {
float lineY = gridY + y * finalBlockSize;
SDL_RenderLine(renderer, gridX, lineY, gridX + GRID_W, lineY);
}
// Draw block statistics panel border
drawRectWithOffset(statsX - 3 - contentOffsetX, statsY - 3 - contentOffsetY, statsW + 6, statsH + 6, {100, 120, 200, 255});
drawRectWithOffset(statsX - contentOffsetX, statsY - contentOffsetY, statsW, statsH, {30, 35, 50, 255});
// Draw next piece preview panel border
drawRectWithOffset(nextX - 3 - contentOffsetX, nextY - 3 - contentOffsetY, nextW + 6, nextH + 6, {100, 120, 200, 255});
drawRectWithOffset(nextX - contentOffsetX, nextY - contentOffsetY, nextW, nextH, {30, 35, 50, 255});
// Draw the game board
const auto &board = game->boardRef();
for (int y = 0; y < Game::ROWS; ++y) {
for (int x = 0; x < Game::COLS; ++x) {
int v = board[y * Game::COLS + x];
if (v > 0) {
float bx = gridX + x * finalBlockSize;
float by = gridY + y * finalBlockSize;
drawBlockTexture(renderer, blocksTex, bx, by, finalBlockSize, v - 1);
}
}
}
// Draw ghost piece (where current piece will land)
if (!game->isPaused()) {
Game::Piece ghostPiece = game->current();
// Find landing position
while (true) {
Game::Piece testPiece = ghostPiece;
testPiece.y++;
bool collision = false;
// Simple collision check
for (int cy = 0; cy < 4; ++cy) {
for (int cx = 0; cx < 4; ++cx) {
if (Game::cellFilled(testPiece, cx, cy)) {
int gx = testPiece.x + cx;
int gy = testPiece.y + cy;
if (gy >= Game::ROWS || gx < 0 || gx >= Game::COLS ||
(gy >= 0 && board[gy * Game::COLS + gx] != 0)) {
collision = true;
break;
}
}
}
if (collision) break;
}
if (collision) break;
ghostPiece = testPiece;
}
// Draw ghost piece
drawPiece(renderer, blocksTex, ghostPiece, gridX, gridY, finalBlockSize, true);
}
// Draw the falling piece
if (!game->isPaused()) {
drawPiece(renderer, blocksTex, game->current(), gridX, gridY, finalBlockSize, false);
}
// Draw line clearing effects
if (lineEffect && lineEffect->isActive()) {
lineEffect->render(renderer, blocksTex, static_cast<int>(gridX), static_cast<int>(gridY), static_cast<int>(finalBlockSize));
}
// Draw next piece preview
pixelFont->draw(renderer, nextX + 10, nextY - 20, "NEXT", 1.0f, {255, 220, 0, 255});
if (game->next().type < PIECE_COUNT) {
drawSmallPiece(renderer, blocksTex, static_cast<PieceType>(game->next().type), nextX + 10, nextY + 10, finalBlockSize * 0.6f);
}
// Draw block statistics (left panel)
pixelFont->draw(renderer, statsX + 10, statsY + 10, "BLOCKS", 1.0f, {255, 220, 0, 255});
const auto& blockCounts = game->getBlockCounts();
int totalBlocks = 0;
for (int i = 0; i < PIECE_COUNT; ++i) totalBlocks += blockCounts[i];
const char* pieceNames[] = {"I", "O", "T", "S", "Z", "J", "L"};
float yCursor = statsY + 52;
for (int i = 0; i < PIECE_COUNT; ++i) {
float py = yCursor;
// Draw small piece icon
float previewSize = finalBlockSize * 0.55f;
drawSmallPiece(renderer, blocksTex, static_cast<PieceType>(i), statsX + 18, py, previewSize);
// Compute preview height
int maxCy = -1;
Game::Piece prev;
prev.type = static_cast<PieceType>(i);
prev.rot = 0;
prev.x = 0;
prev.y = 0;
for (int cy = 0; cy < 4; ++cy) {
for (int cx = 0; cx < 4; ++cx) {
if (Game::cellFilled(prev, cx, cy)) maxCy = std::max(maxCy, cy);
}
}
int tilesHigh = (maxCy >= 0 ? maxCy + 1 : 1);
float previewHeight = tilesHigh * previewSize;
// Count display
int count = blockCounts[i];
char countStr[16];
snprintf(countStr, sizeof(countStr), "%d", count);
pixelFont->draw(renderer, statsX + statsW - 20, py + 6, countStr, 1.1f, {240, 240, 245, 255});
// Percentage bar
int perc = (totalBlocks > 0) ? int(std::round(100.0 * double(count) / double(totalBlocks))) : 0;
char percStr[16];
snprintf(percStr, sizeof(percStr), "%d%%", perc);
float barX = statsX + 12;
float barY = py + previewHeight + 18.0f;
float barW = statsW - 24;
float barH = 6;
pixelFont->draw(renderer, barX, barY - 16, percStr, 0.8f, {230, 230, 235, 255});
// Progress bar
SDL_SetRenderDrawColor(renderer, 170, 170, 175, 200);
SDL_FRect track{barX, barY, barW, barH};
SDL_RenderFillRect(renderer, &track);
SDL_Color pc = COLORS[i + 1];
SDL_SetRenderDrawColor(renderer, pc.r, pc.g, pc.b, 230);
float fillW = barW * (perc / 100.0f);
if (fillW < 0) fillW = 0;
if (fillW > barW) fillW = barW;
SDL_FRect fill{barX, barY, fillW, barH};
SDL_RenderFillRect(renderer, &fill);
yCursor = barY + barH + 18.0f;
}
// Draw score panel (right side)
const float contentTopOffset = 0.0f;
const float contentBottomOffset = 290.0f;
const float contentPad = 36.0f;
float scoreContentH = (contentBottomOffset - contentTopOffset) + contentPad;
float baseY = gridY + (GRID_H - scoreContentH) * 0.5f;
pixelFont->draw(renderer, scoreX, baseY + 0, "SCORE", 1.0f, {255, 220, 0, 255});
char scoreStr[32];
snprintf(scoreStr, sizeof(scoreStr), "%d", game->score());
pixelFont->draw(renderer, scoreX, baseY + 25, scoreStr, 0.9f, {255, 255, 255, 255});
pixelFont->draw(renderer, scoreX, baseY + 70, "LINES", 1.0f, {255, 220, 0, 255});
char linesStr[16];
snprintf(linesStr, sizeof(linesStr), "%03d", game->lines());
pixelFont->draw(renderer, scoreX, baseY + 95, linesStr, 0.9f, {255, 255, 255, 255});
pixelFont->draw(renderer, scoreX, baseY + 140, "LEVEL", 1.0f, {255, 220, 0, 255});
char levelStr[16];
snprintf(levelStr, sizeof(levelStr), "%02d", game->level());
pixelFont->draw(renderer, scoreX, baseY + 165, levelStr, 0.9f, {255, 255, 255, 255});
// Next level progress
int startLv = game->startLevelBase();
int firstThreshold = (startLv + 1) * 10;
int linesDone = game->lines();
int nextThreshold = 0;
if (linesDone < firstThreshold) {
nextThreshold = firstThreshold;
} else {
int blocksPast = linesDone - firstThreshold;
nextThreshold = firstThreshold + ((blocksPast / 10) + 1) * 10;
}
int linesForNext = std::max(0, nextThreshold - linesDone);
pixelFont->draw(renderer, scoreX, baseY + 200, "NEXT LVL", 1.0f, {255, 220, 0, 255});
char nextStr[32];
snprintf(nextStr, sizeof(nextStr), "%d LINES", linesForNext);
pixelFont->draw(renderer, scoreX, baseY + 225, nextStr, 0.9f, {80, 255, 120, 255});
// Time display
pixelFont->draw(renderer, scoreX, baseY + 265, "TIME", 1.0f, {255, 220, 0, 255});
int totalSecs = static_cast<int>(game->elapsed());
int mins = totalSecs / 60;
int secs = totalSecs % 60;
char timeStr[16];
snprintf(timeStr, sizeof(timeStr), "%02d:%02d", mins, secs);
pixelFont->draw(renderer, scoreX, baseY + 290, timeStr, 0.9f, {255, 255, 255, 255});
// Gravity HUD
char gms[64];
double gms_val = game->getGravityMs();
double gfps = gms_val > 0.0 ? (1000.0 / gms_val) : 0.0;
snprintf(gms, sizeof(gms), "GRAV: %.0f ms (%.2f fps)", gms_val, gfps);
pixelFont->draw(renderer, logicalW - 260, 10, gms, 0.9f, {200, 200, 220, 255});
// Hold piece (if implemented)
if (game->held().type < PIECE_COUNT) {
pixelFont->draw(renderer, statsX + 10, statsY + statsH - 80, "HOLD", 1.0f, {255, 220, 0, 255});
drawSmallPiece(renderer, blocksTex, static_cast<PieceType>(game->held().type), statsX + 60, statsY + statsH - 80, finalBlockSize * 0.6f);
}
// Pause overlay
if (game->isPaused() && !showExitConfirmPopup) {
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 180);
SDL_FRect pauseOverlay{0, 0, logicalW, logicalH};
SDL_RenderFillRect(renderer, &pauseOverlay);
pixelFont->draw(renderer, logicalW * 0.5f - 80, logicalH * 0.5f - 20, "PAUSED", 2.0f, {255, 255, 255, 255});
pixelFont->draw(renderer, logicalW * 0.5f - 120, logicalH * 0.5f + 30, "Press P to resume", 0.8f, {200, 200, 220, 255});
}
// Exit confirmation popup
if (showExitConfirmPopup) {
float popupW = 420.0f, popupH = 180.0f;
float popupX = (logicalW - popupW) * 0.5f;
float popupY = (logicalH - popupH) * 0.5f;
// Dim entire window (do not change viewport/scales here)
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 200);
SDL_FRect fullWin{0.f, 0.f, winW, winH};
SDL_RenderFillRect(renderer, &fullWin);
// Draw popup box in logical coords with content offsets
drawRectWithOffset(popupX - 4.0f, popupY - 4.0f, popupW + 8.0f, popupH + 8.0f, {60, 70, 90, 255});
drawRectWithOffset(popupX, popupY, popupW, popupH, {20, 22, 28, 240});
// Text content (measure to perfectly center)
const std::string title = "Exit game?";
const std::string line1 = "Are you sure you want to";
const std::string line2 = "leave the current game?";
int wTitle=0,hTitle=0; pixelFont->measure(title, 1.6f, wTitle, hTitle);
int wL1=0,hL1=0; pixelFont->measure(line1, 0.9f, wL1, hL1);
int wL2=0,hL2=0; pixelFont->measure(line2, 0.9f, wL2, hL2);
float titleX = popupX + (popupW - (float)wTitle) * 0.5f + contentOffsetX;
float l1X = popupX + (popupW - (float)wL1) * 0.5f + contentOffsetX;
float l2X = popupX + (popupW - (float)wL2) * 0.5f + contentOffsetX;
pixelFont->draw(renderer, titleX, popupY + contentOffsetY + 20.0f, title, 1.6f, {255, 220, 0, 255});
pixelFont->draw(renderer, l1X, popupY + contentOffsetY + 60.0f, line1, 0.9f, {220, 220, 230, 255});
pixelFont->draw(renderer, l2X, popupY + contentOffsetY + 84.0f, line2, 0.9f, {220, 220, 230, 255});
// Buttons
float btnW = 140.0f, btnH = 46.0f;
float yesX = popupX + popupW * 0.25f - btnW * 0.5f;
float noX = popupX + popupW * 0.75f - btnW * 0.5f;
float btnY = popupY + popupH - 60.0f;
// YES button
drawRectWithOffset(yesX - 2.0f, btnY - 2.0f, btnW + 4.0f, btnH + 4.0f, {100, 120, 140, 255});
drawRectWithOffset(yesX, btnY, btnW, btnH, {200, 60, 60, 255});
const std::string yes = "YES";
int wYes=0,hYes=0; pixelFont->measure(yes, 1.0f, wYes, hYes);
pixelFont->draw(renderer, yesX + (btnW - (float)wYes) * 0.5f + contentOffsetX,
btnY + (btnH - (float)hYes) * 0.5f + contentOffsetY,
yes, 1.0f, {255, 255, 255, 255});
// NO button
drawRectWithOffset(noX - 2.0f, btnY - 2.0f, btnW + 4.0f, btnH + 4.0f, {100, 120, 140, 255});
drawRectWithOffset(noX, btnY, btnW, btnH, {80, 140, 80, 255});
const std::string no = "NO";
int wNo=0,hNo=0; pixelFont->measure(no, 1.0f, wNo, hNo);
pixelFont->draw(renderer, noX + (btnW - (float)wNo) * 0.5f + contentOffsetX,
btnY + (btnH - (float)hNo) * 0.5f + contentOffsetY,
no, 1.0f, {255, 255, 255, 255});
}
}

View File

@ -0,0 +1,40 @@
#pragma once
#include <SDL3/SDL.h>
#include "../../gameplay/core/Game.h"
// Forward declarations
class FontAtlas;
class LineEffect;
/**
* GameRenderer - Utility class for rendering the Tetris game board and HUD.
*
* This class encapsulates all the game-specific rendering logic that was
* previously in main.cpp, making it reusable across different contexts.
*/
class GameRenderer {
public:
// Render the complete playing state including game board, HUD, and effects
static void renderPlayingState(
SDL_Renderer* renderer,
Game* game,
FontAtlas* pixelFont,
LineEffect* lineEffect,
SDL_Texture* blocksTex,
float logicalW,
float logicalH,
float logicalScale,
float winW,
float winH,
bool showExitConfirmPopup
);
private:
// Helper functions for drawing game elements
static void drawBlockTexture(SDL_Renderer* renderer, SDL_Texture* blocksTex, float x, float y, float size, int blockType);
static void drawPiece(SDL_Renderer* renderer, SDL_Texture* blocksTex, const Game::Piece& piece, float ox, float oy, float tileSize, bool isGhost = false);
static void drawSmallPiece(SDL_Renderer* renderer, SDL_Texture* blocksTex, PieceType pieceType, float x, float y, float tileSize);
// Helper function for drawing rectangles
static void drawRect(SDL_Renderer* renderer, float x, float y, float w, float h, SDL_Color c);
};

View File

@ -0,0 +1,328 @@
#include "RenderManager.h"
#include <SDL3/SDL.h>
#include <algorithm>
RenderManager::RenderManager() = default;
RenderManager::~RenderManager() {
if (m_initialized) {
shutdown();
}
}
bool RenderManager::initialize(int width, int height, const std::string& title) {
if (m_initialized) {
SDL_LogWarn(SDL_LOG_CATEGORY_RENDER, "RenderManager already initialized");
return true;
}
SDL_LogInfo(SDL_LOG_CATEGORY_RENDER, "Initializing RenderManager (%dx%d)", width, height);
// Create window
m_window = SDL_CreateWindow(
title.c_str(),
width, height,
SDL_WINDOW_RESIZABLE
);
if (!m_window) {
SDL_LogError(SDL_LOG_CATEGORY_RENDER, "Failed to create window: %s", SDL_GetError());
return false;
}
// Create renderer
m_renderer = SDL_CreateRenderer(m_window, nullptr);
if (!m_renderer) {
SDL_LogError(SDL_LOG_CATEGORY_RENDER, "Failed to create renderer: %s", SDL_GetError());
SDL_DestroyWindow(m_window);
m_window = nullptr;
return false;
}
// Enable VSync
SDL_SetRenderVSync(m_renderer, 1);
// Store window dimensions
m_windowWidth = width;
m_windowHeight = height;
m_logicalWidth = width;
m_logicalHeight = height;
// Set initial logical size
setLogicalSize(width, height);
m_initialized = true;
SDL_LogInfo(SDL_LOG_CATEGORY_RENDER, "RenderManager initialized successfully");
return true;
}
void RenderManager::shutdown() {
if (!m_initialized) {
return;
}
SDL_LogInfo(SDL_LOG_CATEGORY_RENDER, "Shutting down RenderManager");
if (m_renderer) {
SDL_DestroyRenderer(m_renderer);
m_renderer = nullptr;
}
if (m_window) {
SDL_DestroyWindow(m_window);
m_window = nullptr;
}
m_initialized = false;
SDL_LogInfo(SDL_LOG_CATEGORY_RENDER, "RenderManager shutdown complete");
}
void RenderManager::beginFrame() {
if (!m_initialized || !m_renderer) {
return;
}
// Trace beginFrame entry
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::beginFrame entry\n"); fclose(f); }
}
// Clear the screen (wrapped with trace)
clear(12, 12, 16, 255); // Dark background similar to original
// Trace after clear
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::beginFrame after clear\n"); fclose(f); }
}
}
void RenderManager::endFrame() {
if (!m_initialized || !m_renderer) {
return;
}
// Trace before present
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::endFrame before present\n"); fclose(f); }
}
SDL_RenderPresent(m_renderer);
// Trace after present
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::endFrame after present\n"); fclose(f); }
}
}
void RenderManager::setLogicalSize(int width, int height) {
if (!m_initialized || !m_renderer) {
return;
}
m_logicalWidth = width;
m_logicalHeight = height;
updateLogicalScale();
}
void RenderManager::setViewport(int x, int y, int width, int height) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_Rect viewport = { x, y, width, height };
SDL_SetRenderViewport(m_renderer, &viewport);
// Keep cached logical viewport in sync if this matches our computed logical scale
m_logicalVP = viewport;
}
void RenderManager::setScale(float scaleX, float scaleY) {
if (!m_initialized || !m_renderer) {
return;
}
m_scaleX = scaleX;
m_scaleY = scaleY;
SDL_SetRenderScale(m_renderer, scaleX, scaleY);
}
void RenderManager::resetViewport() {
if (!m_initialized || !m_renderer) {
return;
}
// Reset to full window viewport and recompute logical scale/viewport
SDL_SetRenderViewport(m_renderer, nullptr);
updateLogicalScale();
}
// IRenderer interface implementation
void RenderManager::clearScreen(uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
clear(static_cast<Uint8>(r), static_cast<Uint8>(g), static_cast<Uint8>(b), static_cast<Uint8>(a));
}
void RenderManager::present() {
if (!m_initialized || !m_renderer) {
return;
}
SDL_RenderPresent(m_renderer);
}
SDL_Renderer* RenderManager::getSDLRenderer() {
return m_renderer;
}
void RenderManager::getWindowDimensions(int& width, int& height) const {
getWindowSize(width, height);
}
void RenderManager::setViewport(const SDL_Rect* viewport) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_SetRenderViewport(m_renderer, viewport);
}
// Legacy clear method
void RenderManager::clear(Uint8 r, Uint8 g, Uint8 b, Uint8 a) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_SetRenderDrawColor(m_renderer, r, g, b, a);
SDL_RenderClear(m_renderer);
}
void RenderManager::renderTexture(SDL_Texture* texture, const SDL_FRect* src, const SDL_FRect* dst) {
if (!m_initialized || !m_renderer || !texture) {
return;
}
// Trace renderTexture usage
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::renderTexture entry tex=%llu src=%p dst=%p\n", (unsigned long long)(uintptr_t)texture, (void*)src, (void*)dst); fclose(f); }
}
SDL_RenderTexture(m_renderer, texture, src, dst);
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "RenderManager::renderTexture after SDL_RenderTexture tex=%llu\n", (unsigned long long)(uintptr_t)texture); fclose(f); }
}
}
void RenderManager::renderTexture(SDL_Texture* texture, float x, float y) {
if (!texture) {
return;
}
float w, h;
SDL_GetTextureSize(texture, &w, &h);
SDL_FRect dst = { x, y, w, h };
renderTexture(texture, nullptr, &dst);
}
void RenderManager::renderTexture(SDL_Texture* texture, float x, float y, float w, float h) {
if (!texture) {
return;
}
SDL_FRect dst = { x, y, w, h };
renderTexture(texture, nullptr, &dst);
}
void RenderManager::renderRect(const SDL_FRect& rect, Uint8 r, Uint8 g, Uint8 b, Uint8 a) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_SetRenderDrawColor(m_renderer, r, g, b, a);
SDL_RenderFillRect(m_renderer, &rect);
}
void RenderManager::renderLine(float x1, float y1, float x2, float y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_SetRenderDrawColor(m_renderer, r, g, b, a);
SDL_RenderLine(m_renderer, x1, y1, x2, y2);
}
void RenderManager::renderPoint(float x, float y, Uint8 r, Uint8 g, Uint8 b, Uint8 a) {
if (!m_initialized || !m_renderer) {
return;
}
SDL_SetRenderDrawColor(m_renderer, r, g, b, a);
SDL_RenderPoint(m_renderer, x, y);
}
void RenderManager::handleWindowResize(int newWidth, int newHeight) {
if (!m_initialized) {
return;
}
SDL_LogInfo(SDL_LOG_CATEGORY_RENDER, "Window resized to %dx%d", newWidth, newHeight);
m_windowWidth = newWidth;
m_windowHeight = newHeight;
updateLogicalScale();
}
void RenderManager::setFullscreen(bool fullscreen) {
if (!m_initialized || !m_window) {
return;
}
if (m_isFullscreen == fullscreen) {
return;
}
SDL_SetWindowFullscreen(m_window, fullscreen ? SDL_WINDOW_FULLSCREEN : 0);
m_isFullscreen = fullscreen;
// Update window size after fullscreen change
SDL_GetWindowSize(m_window, &m_windowWidth, &m_windowHeight);
updateLogicalScale();
}
void RenderManager::getWindowSize(int& width, int& height) const {
width = m_windowWidth;
height = m_windowHeight;
}
void RenderManager::getTextureSize(SDL_Texture* tex, int& w, int& h) const {
if (!tex) { w = 0; h = 0; return; }
// SDL3 provides SDL_GetTextureSize which accepts float or int pointers depending on overloads
float fw = 0.0f, fh = 0.0f;
SDL_GetTextureSize(tex, &fw, &fh);
w = int(fw + 0.5f);
h = int(fh + 0.5f);
}
void RenderManager::updateLogicalScale() {
if (!m_initialized || !m_renderer) {
return;
}
// Calculate scale to fit logical size into window
float scaleX = static_cast<float>(m_windowWidth) / static_cast<float>(m_logicalWidth);
float scaleY = static_cast<float>(m_windowHeight) / static_cast<float>(m_logicalHeight);
// Use uniform scaling to maintain aspect ratio
float scale = std::min(scaleX, scaleY);
if (scale <= 0.0f) {
scale = 1.0f;
}
setScale(scale, scale);
// Compute centered logical viewport that preserves aspect ratio and is centered in window
int vpW = static_cast<int>(m_logicalWidth * scale);
int vpH = static_cast<int>(m_logicalHeight * scale);
int vpX = (m_windowWidth - vpW) / 2;
int vpY = (m_windowHeight - vpH) / 2;
SDL_Rect vp{ vpX, vpY, vpW, vpH };
SDL_SetRenderViewport(m_renderer, &vp);
// Cache logical viewport and scale for callers
m_logicalVP = vp;
m_logicalScale = scale;
}

View File

@ -0,0 +1,95 @@
#pragma once
#include <SDL3/SDL.h>
#include <string>
#include "../../core/interfaces/IRenderer.h"
/**
* RenderManager - Abstracts SDL rendering functionality
*
* Responsibilities:
* - Manage SDL_Window and SDL_Renderer lifecycle
* - Provide high-level rendering interface
* - Handle viewport and scaling logic
* - Abstract SDL-specific details from game code
*/
class RenderManager : public IRenderer {
public:
RenderManager();
~RenderManager();
// Initialization and cleanup
bool initialize(int width, int height, const std::string& title);
void shutdown();
// Frame management
void beginFrame();
void endFrame();
// IRenderer interface implementation
void clearScreen(uint8_t r, uint8_t g, uint8_t b, uint8_t a) override;
void present() override;
SDL_Renderer* getSDLRenderer() override;
void getWindowDimensions(int& width, int& height) const override;
void setViewport(const SDL_Rect* viewport) override;
void setScale(float scaleX, float scaleY) override;
// Additional RenderManager-specific methods
void setLogicalSize(int width, int height);
void setViewport(int x, int y, int width, int height);
void resetViewport();
// Query the computed logical viewport and scale (useful for consistent input mapping)
SDL_Rect getLogicalViewport() const { return m_logicalVP; }
float getLogicalScale() const { return m_logicalScale; }
// Basic rendering operations (legacy method signature)
void clear(Uint8 r = 0, Uint8 g = 0, Uint8 b = 0, Uint8 a = 255);
// Texture rendering
void renderTexture(SDL_Texture* texture, const SDL_FRect* src, const SDL_FRect* dst);
void renderTexture(SDL_Texture* texture, float x, float y);
void renderTexture(SDL_Texture* texture, float x, float y, float w, float h);
// Primitive rendering
void renderRect(const SDL_FRect& rect, Uint8 r, Uint8 g, Uint8 b, Uint8 a = 255);
void renderLine(float x1, float y1, float x2, float y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a = 255);
void renderPoint(float x, float y, Uint8 r, Uint8 g, Uint8 b, Uint8 a = 255);
// Window management
void handleWindowResize(int newWidth, int newHeight);
void setFullscreen(bool fullscreen);
void getWindowSize(int& width, int& height) const;
// Direct access to SDL objects (temporary, will be removed later)
SDL_Window* getSDLWindow() const { return m_window; }
// Texture queries
void getTextureSize(SDL_Texture* tex, int& w, int& h) const;
// State queries
bool isInitialized() const { return m_initialized; }
bool isFullscreen() const { return m_isFullscreen; }
private:
// SDL objects
SDL_Window* m_window = nullptr;
SDL_Renderer* m_renderer = nullptr;
// Window properties
int m_windowWidth = 0;
int m_windowHeight = 0;
int m_logicalWidth = 0;
int m_logicalHeight = 0;
float m_scaleX = 1.0f;
float m_scaleY = 1.0f;
// State
bool m_initialized = false;
bool m_isFullscreen = false;
// Cached logical viewport and scale (centered within window)
SDL_Rect m_logicalVP{0,0,0,0};
float m_logicalScale = 1.0f;
// Helper methods
void updateLogicalScale();
};

36
src/graphics/ui/Font.cpp Normal file
View File

@ -0,0 +1,36 @@
// Font.cpp - implementation of FontAtlas (copied into src/graphics)
#include "graphics/Font.h"
#include <SDL3/SDL.h>
bool FontAtlas::init(const std::string& path, int basePt) { fontPath = path; baseSize = basePt; return true; }
void FontAtlas::shutdown() { for (auto &kv : cache) if (kv.second) TTF_CloseFont(kv.second); cache.clear(); }
TTF_Font* FontAtlas::getSized(int ptSize) {
auto it = cache.find(ptSize); if (it!=cache.end()) return it->second;
TTF_Font* f = TTF_OpenFont(fontPath.c_str(), ptSize);
if (!f) return nullptr; cache[ptSize] = f; return f;
}
void FontAtlas::draw(SDL_Renderer* r, float x, float y, const std::string& text, float scale, SDL_Color color) {
if (scale <= 0) return; int pt = int(baseSize * scale); if (pt < 8) pt = 8; TTF_Font* f = getSized(pt); if (!f) return;
SDL_Surface* surf = TTF_RenderText_Blended(f, text.c_str(), text.length(), color); if (!surf) return;
SDL_Texture* tex = SDL_CreateTextureFromSurface(r, surf);
if (tex) { SDL_FRect dst{ x, y, (float)surf->w, (float)surf->h }; SDL_RenderTexture(r, tex, nullptr, &dst); SDL_DestroyTexture(tex); }
SDL_DestroySurface(surf);
}
void FontAtlas::measure(const std::string& text, float scale, int& outW, int& outH) {
outW = 0; outH = 0;
if (scale <= 0) return;
int pt = int(baseSize * scale);
if (pt < 1) pt = 1;
TTF_Font* f = getSized(pt);
if (!f) return;
// Use render-to-surface measurement to avoid dependency on specific TTF_* measurement API variants
SDL_Color dummy = {255,255,255,255};
SDL_Surface* surf = TTF_RenderText_Blended(f, text.c_str(), text.length(), dummy);
if (!surf) return;
outW = surf->w; outH = surf->h;
SDL_DestroySurface(surf);
}

20
src/graphics/ui/Font.h Normal file
View File

@ -0,0 +1,20 @@
// Font.h - Font rendering abstraction with simple size cache
#pragma once
#include <SDL3_ttf/SDL_ttf.h>
#include <string>
#include <unordered_map>
struct SDL_Renderer;
class FontAtlas {
public:
bool init(const std::string& path, int basePt);
void shutdown();
void draw(SDL_Renderer* r, float x, float y, const std::string& text, float scale, SDL_Color color);
// Measure rendered text size in pixels for a given scale
void measure(const std::string& text, float scale, int& outW, int& outH);
private:
std::string fontPath;
int baseSize{24};
std::unordered_map<int, TTF_Font*> cache; // point size -> font*
TTF_Font* getSized(int ptSize);
};

View File

@ -17,12 +17,12 @@
#include "audio/Audio.h"
#include "audio/SoundEffect.h"
#include "gameplay/Game.h"
#include "gameplay/core/Game.h"
#include "persistence/Scores.h"
#include "graphics/Starfield.h"
#include "Starfield3D.h"
#include "graphics/Font.h"
#include "gameplay/LineEffect.h"
#include "graphics/effects/Starfield.h"
#include "graphics/effects/Starfield3D.h"
#include "graphics/ui/Font.h"
#include "gameplay/effects/LineEffect.h"
#include "states/State.h"
#include "states/LoadingState.h"
#include "states/MenuState.h"
@ -268,7 +268,7 @@ static void drawSettingsPopup(SDL_Renderer* renderer, FontAtlas& font, bool musi
// Starfield now managed by Starfield class
// State manager integration (scaffolded in StateManager.h)
#include "core/StateManager.h"
#include "core/state/StateManager.h"
// -----------------------------------------------------------------------------
// Intro/Menu state variables
@ -664,28 +664,10 @@ int main(int, char **)
stateMgr.registerOnEnter(AppState::LevelSelector, [&](){ levelSelectorState->onEnter(); });
stateMgr.registerOnExit(AppState::LevelSelector, [&](){ levelSelectorState->onExit(); });
// Combined Playing state handler: run playingState handler and inline gameplay mapping
// Combined Playing state handler: run playingState handler
stateMgr.registerHandler(AppState::Playing, [&](const SDL_Event& e){
// First give the PlayingState a chance to handle the event
playingState->handleEvent(e);
// Then perform inline gameplay mappings (gravity/rotation/hard-drop/hold)
if (e.type == SDL_EVENT_KEY_DOWN && !e.key.repeat) {
if (!game.isPaused()) {
if (e.key.scancode == SDL_SCANCODE_SPACE) {
game.hardDrop();
}
else if (e.key.scancode == SDL_SCANCODE_UP) {
game.rotate(+1);
}
else if (e.key.scancode == SDL_SCANCODE_Z || (e.key.mod & SDL_KMOD_SHIFT)) {
game.rotate(-1);
}
else if (e.key.scancode == SDL_SCANCODE_C || (e.key.mod & SDL_KMOD_CTRL)) {
game.holdCurrent();
}
}
}
});
stateMgr.registerOnEnter(AppState::Playing, [&](){ playingState->onEnter(); });
stateMgr.registerOnExit(AppState::Playing, [&](){ playingState->onExit(); });
@ -983,7 +965,8 @@ int main(int, char **)
// Update progress based on background loading
if (currentTrackLoading > 0 && !musicLoaded) {
currentTrackLoading = Audio::instance().getLoadedTrackCount();
if (Audio::instance().isLoadingComplete()) {
// If loading is complete OR we've loaded all expected tracks (handles potential thread cleanup hang)
if (Audio::instance().isLoadingComplete() || (totalTracks > 0 && currentTrackLoading >= totalTracks)) {
Audio::instance().shuffle(); // Shuffle once all tracks are loaded
musicLoaded = true;
}
@ -1006,6 +989,10 @@ int main(int, char **)
// Ensure we never exceed 100% and reach exactly 100% when everything is loaded
loadingProgress = std::min(1.0, loadingProgress);
// Fix floating point precision issues (0.2 + 0.7 + 0.1 can be 0.9999...)
if (loadingProgress > 0.99) loadingProgress = 1.0;
if (musicLoaded && timeProgress >= 0.1) {
loadingProgress = 1.0;
}
@ -1082,6 +1069,7 @@ int main(int, char **)
snprintf(bgPath, sizeof(bgPath), "assets/images/tetris_main_back_level%d.bmp", bgLevel);
SDL_Surface* levelBgSurface = SDL_LoadBMP(bgPath);
if (levelBgSurface) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Loaded background for level %d: %s", bgLevel, bgPath);
nextLevelBackgroundTex = SDL_CreateTextureFromSurface(renderer, levelBgSurface);
SDL_DestroySurface(levelBgSurface);
// start fade transition
@ -1089,6 +1077,7 @@ int main(int, char **)
levelFadeElapsed = 0.0f;
cachedLevel = bgLevel;
} else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Failed to load background for level %d: %s (Error: %s)", bgLevel, bgPath, SDL_GetError());
// don't change textures if file missing
cachedLevel = -1;
}
@ -1427,9 +1416,14 @@ int main(int, char **)
drawPiece(renderer, blocksTex, game.current(), gridX, gridY, finalBlockSize, false);
}
// Handle line clearing effects
if (game.hasCompletedLines() && !lineEffect.isActive()) {
lineEffect.startLineClear(game.getCompletedLines(), static_cast<int>(gridX), static_cast<int>(gridY), static_cast<int>(finalBlockSize));
}
// Draw line clearing effects
if (lineEffect.isActive()) {
lineEffect.render(renderer, static_cast<int>(gridX), static_cast<int>(gridY), static_cast<int>(finalBlockSize));
lineEffect.render(renderer, blocksTex, static_cast<int>(gridX), static_cast<int>(gridY), static_cast<int>(finalBlockSize));
}
// Draw next piece preview

1677
src/main_dist.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,7 @@
#include <SDL3/SDL.h>
#include <SDL3/SDL_main.h>
#include "core/ApplicationManager.h"
#include "core/application/ApplicationManager.h"
#include <iostream>
int main(int argc, char* argv[]) {

View File

@ -1,16 +1,15 @@
// LevelSelectorState.cpp - Level selection popup state implementation
#include "LevelSelectorState.h"
#include "State.h"
#include "../core/StateManager.h"
#include "../graphics/Font.h"
#include "../core/state/StateManager.h"
#include "../core/GlobalState.h"
#include "../graphics/ui/Font.h"
#include <SDL3/SDL.h>
#include <algorithm>
#include <cstdio>
#include <string>
// Constants from main.cpp
static constexpr int LOGICAL_W = 1200;
static constexpr int LOGICAL_H = 1000;
// Use dynamic logical dimensions from GlobalState instead of hardcoded values
// --- Minimal draw helpers and look-and-feel adapted from the sample ---
static inline SDL_Color RGBA(Uint8 r, Uint8 g, Uint8 b, Uint8 a = 255) { return SDL_Color{r, g, b, a}; }
@ -187,6 +186,10 @@ void LevelSelectorState::handleEvent(const SDL_Event& e) {
if (ctx.startLevelSelection) *ctx.startLevelSelection = hoveredLevel;
} else if (e.type == SDL_EVENT_MOUSE_BUTTON_DOWN) {
if (e.button.button == SDL_BUTTON_LEFT) {
// Get dynamic logical dimensions
const int LOGICAL_W = GlobalState::instance().getLogicalWidth();
const int LOGICAL_H = GlobalState::instance().getLogicalHeight();
// convert mouse to logical coords (viewport is already centered)
float lx = (float(e.button.x) - float(lastLogicalVP.x)) / (lastLogicalScale > 0.f ? lastLogicalScale : 1.f);
float ly = (float(e.button.y) - float(lastLogicalVP.y)) / (lastLogicalScale > 0.f ? lastLogicalScale : 1.f);
@ -200,6 +203,10 @@ void LevelSelectorState::handleEvent(const SDL_Event& e) {
}
}
} else if (e.type == SDL_EVENT_MOUSE_MOTION) {
// Get dynamic logical dimensions
const int LOGICAL_W = GlobalState::instance().getLogicalWidth();
const int LOGICAL_H = GlobalState::instance().getLogicalHeight();
// convert mouse to logical coords (viewport is already centered)
float lx = (float(e.motion.x) - float(lastLogicalVP.x)) / (lastLogicalScale > 0.f ? lastLogicalScale : 1.f);
float ly = (float(e.motion.y) - float(lastLogicalVP.y)) / (lastLogicalScale > 0.f ? lastLogicalScale : 1.f);
@ -224,6 +231,10 @@ void LevelSelectorState::render(SDL_Renderer* renderer, float logicalScale, SDL_
void LevelSelectorState::drawLevelSelectionPopup(SDL_Renderer* renderer) {
if (!renderer) return;
// Get dynamic logical dimensions
const int LOGICAL_W = GlobalState::instance().getLogicalWidth();
const int LOGICAL_H = GlobalState::instance().getLogicalHeight();
// Since ApplicationManager sets up a centered viewport, we draw directly in logical coordinates
// The viewport (LOGICAL_W x LOGICAL_H) is already centered within the window
float vw = float(LOGICAL_W);
@ -252,6 +263,10 @@ void LevelSelectorState::drawLevelSelectionPopup(SDL_Renderer* renderer) {
}
bool LevelSelectorState::isMouseInPopup(float mouseX, float mouseY, float& popupX, float& popupY, float& popupW, float& popupH) {
// Get dynamic logical dimensions
const int LOGICAL_W = GlobalState::instance().getLogicalWidth();
const int LOGICAL_H = GlobalState::instance().getLogicalHeight();
// Simplified: viewport is already centered, just convert mouse to logical coords
(void)mouseX; (void)mouseY;
float lx = 0.f, ly = 0.f;
@ -265,6 +280,10 @@ bool LevelSelectorState::isMouseInPopup(float mouseX, float mouseY, float& popup
}
int LevelSelectorState::getLevelFromMouse(float mouseX, float mouseY, float popupX, float popupY, float popupW, float popupH) {
// Get dynamic logical dimensions
const int LOGICAL_W = GlobalState::instance().getLogicalWidth();
const int LOGICAL_H = GlobalState::instance().getLogicalHeight();
(void)popupX; (void)popupY; (void)popupW; (void)popupH;
float lx = 0.f, ly = 0.f;
if (lastLogicalScale > 0.0f) {

View File

@ -1,6 +1,6 @@
// LoadingState.cpp
#include "LoadingState.h"
#include "gameplay/Game.h"
#include "../gameplay/core/Game.h"
#include <SDL3/SDL.h>
#include <cstdio>

View File

@ -1,4 +1,3 @@
// MenuState.cpp
#include "MenuState.h"
#include "persistence/Scores.h"
#include "graphics/Font.h"
@ -9,9 +8,8 @@
#include <algorithm>
#include <cmath>
// Local logical canvas size (matches main.cpp). Kept local to avoid changing many files.
static constexpr int LOGICAL_W = 1200;
static constexpr int LOGICAL_H = 1000;
// Use dynamic logical dimensions from GlobalState instead of hardcoded values
// This allows the UI to adapt when the window is resized or goes fullscreen
// Shared flags and resources are provided via StateContext `ctx`.
// Removed fragile extern declarations and use `ctx.showLevelPopup`, `ctx.showSettingsPopup`,
@ -39,14 +37,23 @@ void MenuState::update(double frameMs) {
}
void MenuState::render(SDL_Renderer* renderer, float logicalScale, SDL_Rect logicalVP) {
// Use fixed logical dimensions to match main.cpp and ensure consistent layout
// This prevents the UI from floating apart on wide/tall screens
const float LOGICAL_W = 1200.f;
const float LOGICAL_H = 1000.f;
// Trace entry to persistent log for debugging abrupt exit/crash during render
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "MenuState::render entry\n"); fclose(f); }
}
// Since ApplicationManager sets up a centered viewport, we draw directly in logical coordinates
// No additional content offset is needed - the viewport itself handles centering
float contentOffsetX = 0.0f;
float contentOffsetY = 0.0f;
// Compute content offsets (same approach as main.cpp for proper centering)
float winW = (float)logicalVP.w;
float winH = (float)logicalVP.h;
float contentW = LOGICAL_W * logicalScale;
float contentH = LOGICAL_H * logicalScale;
float contentOffsetX = (winW - contentW) * 0.5f / logicalScale;
float contentOffsetY = (winH - contentH) * 0.5f / logicalScale;
// Background is drawn by main (stretched to the full window) to avoid double-draw.
@ -94,7 +101,10 @@ void MenuState::render(SDL_Renderer* renderer, float logicalScale, SDL_Rect logi
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "MenuState::render before useFont->draw TOP PLAYERS ptr=%llu\n", (unsigned long long)(uintptr_t)useFont); fclose(f); }
}
useFont->draw(renderer, LOGICAL_W * 0.5f - 110 + contentOffsetX, topPlayersY, std::string("TOP PLAYERS"), 1.8f, SDL_Color{255, 220, 0, 255});
const std::string title = "TOP PLAYERS";
int tW = 0, tH = 0; useFont->measure(title, 1.8f, tW, tH);
float titleX = (LOGICAL_W - (float)tW) * 0.5f + contentOffsetX;
useFont->draw(renderer, titleX, topPlayersY, title, 1.8f, SDL_Color{255, 220, 0, 255});
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "MenuState::render after useFont->draw TOP PLAYERS\n"); fclose(f); }
}
@ -148,8 +158,7 @@ void MenuState::render(SDL_Renderer* renderer, float logicalScale, SDL_Rect logi
}
// Draw bottom action buttons with responsive sizing (reduced to match main mouse hit-test)
// Since we removed content offsets, calculate contentW directly from the scale and logical size
float contentW = LOGICAL_W * logicalScale;
// Use the contentW calculated at the top with content offsets
bool isSmall = (contentW < 700.0f);
float btnW = isSmall ? (LOGICAL_W * 0.4f) : 300.0f;
float btnH = isSmall ? 60.0f : 70.0f;
@ -178,7 +187,6 @@ void MenuState::render(SDL_Renderer* renderer, float logicalScale, SDL_Rect logi
};
drawMenuButtonLocal(renderer, *ctx.pixelFont, btnX - btnW * 0.6f, btnY, btnW, btnH, std::string("PLAY"), SDL_Color{60,180,80,255}, SDL_Color{30,120,40,255});
{
FILE* f = fopen("tetris_trace.log", "a"); if (f) { fprintf(f, "MenuState::render after draw PLAY button\n"); fclose(f); }
}
drawMenuButtonLocal(renderer, *ctx.pixelFont, btnX + btnW * 0.6f, btnY, btnW, btnH, std::string(levelBtnText), SDL_Color{40,140,240,255}, SDL_Color{20,100,200,255});
{

View File

@ -1,8 +1,8 @@
#include "PlayingState.h"
#include "core/StateManager.h"
#include "gameplay/Game.h"
#include "gameplay/LineEffect.h"
#include "persistence/Scores.h"
#include "../core/state/StateManager.h"
#include "../gameplay/core/Game.h"
#include "../gameplay/effects/LineEffect.h"
#include "../persistence/Scores.h"
#include "../audio/Audio.h"
#include <SDL3/SDL.h>